| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qeqnumdivden |  | 
						
							| 2 | 1 | adantr |  | 
						
							| 3 |  | oveq2 |  | 
						
							| 4 | 3 | adantl |  | 
						
							| 5 |  | qnumcl |  | 
						
							| 6 | 5 | adantr |  | 
						
							| 7 | 6 | zcnd |  | 
						
							| 8 | 7 | div1d |  | 
						
							| 9 | 2 4 8 | 3eqtrd |  | 
						
							| 10 | 9 6 | eqeltrd |  | 
						
							| 11 |  | simpr |  | 
						
							| 12 | 11 | zcnd |  | 
						
							| 13 | 12 | div1d |  | 
						
							| 14 | 13 | fveq2d |  | 
						
							| 15 |  | 1nn |  | 
						
							| 16 |  | divdenle |  | 
						
							| 17 | 11 15 16 | sylancl |  | 
						
							| 18 | 14 17 | eqbrtrrd |  | 
						
							| 19 |  | qdencl |  | 
						
							| 20 | 19 | adantr |  | 
						
							| 21 |  | nnle1eq1 |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 18 22 | mpbid |  | 
						
							| 24 | 10 23 | impbida |  |