Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlift.1 | |
|
qlift.2 | |
||
qlift.3 | |
||
qlift.4 | |
||
qliftfun.4 | |
||
Assertion | qliftfun | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | |
|
2 | qlift.2 | |
|
3 | qlift.3 | |
|
4 | qlift.4 | |
|
5 | qliftfun.4 | |
|
6 | 1 2 3 4 | qliftlem | |
7 | eceq1 | |
|
8 | 1 6 2 7 5 | fliftfun | |
9 | 3 | adantr | |
10 | simpr | |
|
11 | 9 10 | ercl | |
12 | 9 10 | ercl2 | |
13 | 11 12 | jca | |
14 | 13 | ex | |
15 | 14 | pm4.71rd | |
16 | 3 | adantr | |
17 | simprl | |
|
18 | 16 17 | erth | |
19 | 18 | pm5.32da | |
20 | 15 19 | bitrd | |
21 | 20 | imbi1d | |
22 | impexp | |
|
23 | 21 22 | bitrdi | |
24 | 23 | 2albidv | |
25 | r2al | |
|
26 | 24 25 | bitr4di | |
27 | 8 26 | bitr4d | |