Metamath Proof Explorer


Theorem qliftfun

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 F=ranxXxRA
qlift.2 φxXAY
qlift.3 φRErX
qlift.4 φXV
qliftfun.4 x=yA=B
Assertion qliftfun φFunFxyxRyA=B

Proof

Step Hyp Ref Expression
1 qlift.1 F=ranxXxRA
2 qlift.2 φxXAY
3 qlift.3 φRErX
4 qlift.4 φXV
5 qliftfun.4 x=yA=B
6 1 2 3 4 qliftlem φxXxRX/R
7 eceq1 x=yxR=yR
8 1 6 2 7 5 fliftfun φFunFxXyXxR=yRA=B
9 3 adantr φxRyRErX
10 simpr φxRyxRy
11 9 10 ercl φxRyxX
12 9 10 ercl2 φxRyyX
13 11 12 jca φxRyxXyX
14 13 ex φxRyxXyX
15 14 pm4.71rd φxRyxXyXxRy
16 3 adantr φxXyXRErX
17 simprl φxXyXxX
18 16 17 erth φxXyXxRyxR=yR
19 18 pm5.32da φxXyXxRyxXyXxR=yR
20 15 19 bitrd φxRyxXyXxR=yR
21 20 imbi1d φxRyA=BxXyXxR=yRA=B
22 impexp xXyXxR=yRA=BxXyXxR=yRA=B
23 21 22 bitrdi φxRyA=BxXyXxR=yRA=B
24 23 2albidv φxyxRyA=BxyxXyXxR=yRA=B
25 r2al xXyXxR=yRA=BxyxXyXxR=yRA=B
26 24 25 bitr4di φxyxRyA=BxXyXxR=yRA=B
27 8 26 bitr4d φFunFxyxRyA=B