Metamath Proof Explorer


Theorem qnumdencl

Description: Lemma for qnumcl and qdencl . (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion qnumdencl AnumerAdenomA

Proof

Step Hyp Ref Expression
1 qredeu A∃!a×1stagcd2nda=1A=1sta2nda
2 riotacl ∃!a×1stagcd2nda=1A=1sta2ndaιa×|1stagcd2nda=1A=1sta2nda×
3 1 2 syl Aιa×|1stagcd2nda=1A=1sta2nda×
4 elxp6 ιa×|1stagcd2nda=1A=1sta2nda×ιa×|1stagcd2nda=1A=1sta2nda=1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda
5 qnumval AnumerA=1stιa×|1stagcd2nda=1A=1sta2nda
6 5 eleq1d AnumerA1stιa×|1stagcd2nda=1A=1sta2nda
7 qdenval AdenomA=2ndιa×|1stagcd2nda=1A=1sta2nda
8 7 eleq1d AdenomA2ndιa×|1stagcd2nda=1A=1sta2nda
9 6 8 anbi12d AnumerAdenomA1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda
10 9 biimprd A1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2ndanumerAdenomA
11 10 adantld Aιa×|1stagcd2nda=1A=1sta2nda=1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2nda1stιa×|1stagcd2nda=1A=1sta2nda2ndιa×|1stagcd2nda=1A=1sta2ndanumerAdenomA
12 4 11 biimtrid Aιa×|1stagcd2nda=1A=1sta2nda×numerAdenomA
13 3 12 mpd AnumerAdenomA