Metamath Proof Explorer


Theorem qsqueeze

Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007)

Ref Expression
Assertion qsqueeze A0Ax0<xA<xA=0

Proof

Step Hyp Ref Expression
1 0re 0
2 ltnle 0A0<A¬A0
3 1 2 mpan A0<A¬A0
4 qbtwnre 0A0<Ax0<xx<A
5 1 4 mp3an1 A0<Ax0<xx<A
6 5 ex A0<Ax0<xx<A
7 qre xx
8 ltnsym AxA<x¬x<A
9 8 con2d Axx<A¬A<x
10 7 9 sylan2 Axx<A¬A<x
11 10 anim2d Ax0<xx<A0<x¬A<x
12 11 reximdva Ax0<xx<Ax0<x¬A<x
13 6 12 syld A0<Ax0<x¬A<x
14 3 13 sylbird A¬A0x0<x¬A<x
15 rexanali x0<x¬A<x¬x0<xA<x
16 14 15 imbitrdi A¬A0¬x0<xA<x
17 16 con4d Ax0<xA<xA0
18 17 imp Ax0<xA<xA0
19 18 3adant2 A0Ax0<xA<xA0
20 letri3 A0A=0A00A
21 1 20 mpan2 AA=0A00A
22 21 rbaibd A0AA=0A0
23 22 3adant3 A0Ax0<xA<xA=0A0
24 19 23 mpbird A0Ax0<xA<xA=0