Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | qsqueeze | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re | |
|
2 | ltnle | |
|
3 | 1 2 | mpan | |
4 | qbtwnre | |
|
5 | 1 4 | mp3an1 | |
6 | 5 | ex | |
7 | qre | |
|
8 | ltnsym | |
|
9 | 8 | con2d | |
10 | 7 9 | sylan2 | |
11 | 10 | anim2d | |
12 | 11 | reximdva | |
13 | 6 12 | syld | |
14 | 3 13 | sylbird | |
15 | rexanali | |
|
16 | 14 15 | imbitrdi | |
17 | 16 | con4d | |
18 | 17 | imp | |
19 | 18 | 3adant2 | |
20 | letri3 | |
|
21 | 1 20 | mpan2 | |
22 | 21 | rbaibd | |
23 | 22 | 3adant3 | |
24 | 19 23 | mpbird | |