Metamath Proof Explorer


Theorem qtopres

Description: The quotient topology is unaffected by restriction to the base set. This property makes it slightly more convenient to use, since we don't have to require that F be a function with domain X . (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 X = J
Assertion qtopres F V J qTop F = J qTop F X

Proof

Step Hyp Ref Expression
1 qtopval.1 X = J
2 resima F X X = F X
3 2 pweqi 𝒫 F X X = 𝒫 F X
4 3 rabeqi s 𝒫 F X X | F X -1 s X J = s 𝒫 F X | F X -1 s X J
5 residm F X X = F X
6 5 cnveqi F X X -1 = F X -1
7 6 imaeq1i F X X -1 s = F X -1 s
8 cnvresima F X X -1 s = F X -1 s X
9 cnvresima F X -1 s = F -1 s X
10 7 8 9 3eqtr3i F X -1 s X = F -1 s X
11 10 eleq1i F X -1 s X J F -1 s X J
12 11 rabbii s 𝒫 F X | F X -1 s X J = s 𝒫 F X | F -1 s X J
13 4 12 eqtr2i s 𝒫 F X | F -1 s X J = s 𝒫 F X X | F X -1 s X J
14 1 qtopval J V F V J qTop F = s 𝒫 F X | F -1 s X J
15 resexg F V F X V
16 1 qtopval J V F X V J qTop F X = s 𝒫 F X X | F X -1 s X J
17 15 16 sylan2 J V F V J qTop F X = s 𝒫 F X X | F X -1 s X J
18 13 14 17 3eqtr4a J V F V J qTop F = J qTop F X
19 18 expcom F V J V J qTop F = J qTop F X
20 df-qtop qTop = j V , f V s 𝒫 f j | f -1 s j j
21 20 reldmmpo Rel dom qTop
22 21 ovprc1 ¬ J V J qTop F =
23 21 ovprc1 ¬ J V J qTop F X =
24 22 23 eqtr4d ¬ J V J qTop F = J qTop F X
25 19 24 pm2.61d1 F V J qTop F = J qTop F X