| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
1
|
qtopres |
|
| 3 |
2
|
3ad2ant2 |
|
| 4 |
|
simp1 |
|
| 5 |
|
funres |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
|
funforn |
|
| 8 |
6 7
|
sylib |
|
| 9 |
|
dmres |
|
| 10 |
|
inss1 |
|
| 11 |
9 10
|
eqsstri |
|
| 12 |
11
|
a1i |
|
| 13 |
1
|
elqtop |
|
| 14 |
4 8 12 13
|
syl3anc |
|
| 15 |
14
|
simprbda |
|
| 16 |
|
velpw |
|
| 17 |
15 16
|
sylibr |
|
| 18 |
17
|
ex |
|
| 19 |
18
|
ssrdv |
|
| 20 |
|
sstr2 |
|
| 21 |
19 20
|
syl5com |
|
| 22 |
|
sspwuni |
|
| 23 |
21 22
|
imbitrdi |
|
| 24 |
|
imauni |
|
| 25 |
14
|
simplbda |
|
| 26 |
25
|
ralrimiva |
|
| 27 |
|
ssralv |
|
| 28 |
26 27
|
mpan9 |
|
| 29 |
|
iunopn |
|
| 30 |
4 28 29
|
syl2an2r |
|
| 31 |
24 30
|
eqeltrid |
|
| 32 |
31
|
ex |
|
| 33 |
23 32
|
jcad |
|
| 34 |
1
|
elqtop |
|
| 35 |
4 8 12 34
|
syl3anc |
|
| 36 |
33 35
|
sylibrd |
|
| 37 |
36
|
alrimiv |
|
| 38 |
|
inss1 |
|
| 39 |
1
|
elqtop |
|
| 40 |
4 8 12 39
|
syl3anc |
|
| 41 |
40
|
biimpa |
|
| 42 |
41
|
adantrr |
|
| 43 |
42
|
simpld |
|
| 44 |
38 43
|
sstrid |
|
| 45 |
6
|
adantr |
|
| 46 |
|
inpreima |
|
| 47 |
45 46
|
syl |
|
| 48 |
4
|
adantr |
|
| 49 |
42
|
simprd |
|
| 50 |
25
|
adantrl |
|
| 51 |
|
inopn |
|
| 52 |
48 49 50 51
|
syl3anc |
|
| 53 |
47 52
|
eqeltrd |
|
| 54 |
1
|
elqtop |
|
| 55 |
4 8 12 54
|
syl3anc |
|
| 56 |
55
|
adantr |
|
| 57 |
44 53 56
|
mpbir2and |
|
| 58 |
57
|
ralrimivva |
|
| 59 |
|
ovex |
|
| 60 |
|
istopg |
|
| 61 |
59 60
|
ax-mp |
|
| 62 |
37 58 61
|
sylanbrc |
|
| 63 |
3 62
|
eqeltrd |
|