Metamath Proof Explorer


Theorem qtoptop2

Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Assertion qtoptop2 J Top F V Fun F J qTop F Top

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 qtopres F V J qTop F = J qTop F J
3 2 3ad2ant2 J Top F V Fun F J qTop F = J qTop F J
4 simp1 J Top F V Fun F J Top
5 funres Fun F Fun F J
6 5 3ad2ant3 J Top F V Fun F Fun F J
7 funforn Fun F J F J : dom F J onto ran F J
8 6 7 sylib J Top F V Fun F F J : dom F J onto ran F J
9 dmres dom F J = J dom F
10 inss1 J dom F J
11 9 10 eqsstri dom F J J
12 11 a1i J Top F V Fun F dom F J J
13 1 elqtop J Top F J : dom F J onto ran F J dom F J J y J qTop F J y ran F J F J -1 y J
14 4 8 12 13 syl3anc J Top F V Fun F y J qTop F J y ran F J F J -1 y J
15 14 simprbda J Top F V Fun F y J qTop F J y ran F J
16 velpw y 𝒫 ran F J y ran F J
17 15 16 sylibr J Top F V Fun F y J qTop F J y 𝒫 ran F J
18 17 ex J Top F V Fun F y J qTop F J y 𝒫 ran F J
19 18 ssrdv J Top F V Fun F J qTop F J 𝒫 ran F J
20 sstr2 x J qTop F J J qTop F J 𝒫 ran F J x 𝒫 ran F J
21 19 20 syl5com J Top F V Fun F x J qTop F J x 𝒫 ran F J
22 sspwuni x 𝒫 ran F J x ran F J
23 21 22 syl6ib J Top F V Fun F x J qTop F J x ran F J
24 imauni F J -1 x = y x F J -1 y
25 14 simplbda J Top F V Fun F y J qTop F J F J -1 y J
26 25 ralrimiva J Top F V Fun F y J qTop F J F J -1 y J
27 ssralv x J qTop F J y J qTop F J F J -1 y J y x F J -1 y J
28 26 27 mpan9 J Top F V Fun F x J qTop F J y x F J -1 y J
29 iunopn J Top y x F J -1 y J y x F J -1 y J
30 4 28 29 syl2an2r J Top F V Fun F x J qTop F J y x F J -1 y J
31 24 30 eqeltrid J Top F V Fun F x J qTop F J F J -1 x J
32 31 ex J Top F V Fun F x J qTop F J F J -1 x J
33 23 32 jcad J Top F V Fun F x J qTop F J x ran F J F J -1 x J
34 1 elqtop J Top F J : dom F J onto ran F J dom F J J x J qTop F J x ran F J F J -1 x J
35 4 8 12 34 syl3anc J Top F V Fun F x J qTop F J x ran F J F J -1 x J
36 33 35 sylibrd J Top F V Fun F x J qTop F J x J qTop F J
37 36 alrimiv J Top F V Fun F x x J qTop F J x J qTop F J
38 inss1 x y x
39 1 elqtop J Top F J : dom F J onto ran F J dom F J J x J qTop F J x ran F J F J -1 x J
40 4 8 12 39 syl3anc J Top F V Fun F x J qTop F J x ran F J F J -1 x J
41 40 biimpa J Top F V Fun F x J qTop F J x ran F J F J -1 x J
42 41 adantrr J Top F V Fun F x J qTop F J y J qTop F J x ran F J F J -1 x J
43 42 simpld J Top F V Fun F x J qTop F J y J qTop F J x ran F J
44 38 43 sstrid J Top F V Fun F x J qTop F J y J qTop F J x y ran F J
45 6 adantr J Top F V Fun F x J qTop F J y J qTop F J Fun F J
46 inpreima Fun F J F J -1 x y = F J -1 x F J -1 y
47 45 46 syl J Top F V Fun F x J qTop F J y J qTop F J F J -1 x y = F J -1 x F J -1 y
48 4 adantr J Top F V Fun F x J qTop F J y J qTop F J J Top
49 42 simprd J Top F V Fun F x J qTop F J y J qTop F J F J -1 x J
50 25 adantrl J Top F V Fun F x J qTop F J y J qTop F J F J -1 y J
51 inopn J Top F J -1 x J F J -1 y J F J -1 x F J -1 y J
52 48 49 50 51 syl3anc J Top F V Fun F x J qTop F J y J qTop F J F J -1 x F J -1 y J
53 47 52 eqeltrd J Top F V Fun F x J qTop F J y J qTop F J F J -1 x y J
54 1 elqtop J Top F J : dom F J onto ran F J dom F J J x y J qTop F J x y ran F J F J -1 x y J
55 4 8 12 54 syl3anc J Top F V Fun F x y J qTop F J x y ran F J F J -1 x y J
56 55 adantr J Top F V Fun F x J qTop F J y J qTop F J x y J qTop F J x y ran F J F J -1 x y J
57 44 53 56 mpbir2and J Top F V Fun F x J qTop F J y J qTop F J x y J qTop F J
58 57 ralrimivva J Top F V Fun F x J qTop F J y J qTop F J x y J qTop F J
59 ovex J qTop F J V
60 istopg J qTop F J V J qTop F J Top x x J qTop F J x J qTop F J x J qTop F J y J qTop F J x y J qTop F J
61 59 60 ax-mp J qTop F J Top x x J qTop F J x J qTop F J x J qTop F J y J qTop F J x y J qTop F J
62 37 58 61 sylanbrc J Top F V Fun F J qTop F J Top
63 3 62 eqeltrd J Top F V Fun F J qTop F Top