| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopval.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
resima |
⊢ ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) = ( 𝐹 “ 𝑋 ) |
| 3 |
2
|
pweqi |
⊢ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) = 𝒫 ( 𝐹 “ 𝑋 ) |
| 4 |
3
|
rabeqi |
⊢ { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } |
| 5 |
|
residm |
⊢ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) = ( 𝐹 ↾ 𝑋 ) |
| 6 |
5
|
cnveqi |
⊢ ◡ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) = ◡ ( 𝐹 ↾ 𝑋 ) |
| 7 |
6
|
imaeq1i |
⊢ ( ◡ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) “ 𝑠 ) = ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) |
| 8 |
|
cnvresima |
⊢ ( ◡ ( ( 𝐹 ↾ 𝑋 ) ↾ 𝑋 ) “ 𝑠 ) = ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) |
| 9 |
|
cnvresima |
⊢ ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) = ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) |
| 10 |
7 8 9
|
3eqtr3i |
⊢ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) = ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) |
| 11 |
10
|
eleq1i |
⊢ ( ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ↔ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ) |
| 12 |
11
|
rabbii |
⊢ { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } |
| 13 |
4 12
|
eqtr2i |
⊢ { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } |
| 14 |
1
|
qtopval |
⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ 𝑉 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 15 |
|
resexg |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 ↾ 𝑋 ) ∈ V ) |
| 16 |
1
|
qtopval |
⊢ ( ( 𝐽 ∈ V ∧ ( 𝐹 ↾ 𝑋 ) ∈ V ) → ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) = { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 17 |
15 16
|
sylan2 |
⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ 𝑉 ) → ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) = { 𝑠 ∈ 𝒫 ( ( 𝐹 ↾ 𝑋 ) “ 𝑋 ) ∣ ( ( ◡ ( 𝐹 ↾ 𝑋 ) “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 18 |
13 14 17
|
3eqtr4a |
⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ 𝑉 ) → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |
| 19 |
18
|
expcom |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 ∈ V → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) ) |
| 20 |
|
df-qtop |
⊢ qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) |
| 21 |
20
|
reldmmpo |
⊢ Rel dom qTop |
| 22 |
21
|
ovprc1 |
⊢ ( ¬ 𝐽 ∈ V → ( 𝐽 qTop 𝐹 ) = ∅ ) |
| 23 |
21
|
ovprc1 |
⊢ ( ¬ 𝐽 ∈ V → ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) = ∅ ) |
| 24 |
22 23
|
eqtr4d |
⊢ ( ¬ 𝐽 ∈ V → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |
| 25 |
19 24
|
pm2.61d1 |
⊢ ( 𝐹 ∈ 𝑉 → ( 𝐽 qTop 𝐹 ) = ( 𝐽 qTop ( 𝐹 ↾ 𝑋 ) ) ) |