| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qtopval.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
elex |
⊢ ( 𝐽 ∈ 𝑉 → 𝐽 ∈ V ) |
| 3 |
|
elex |
⊢ ( 𝐹 ∈ 𝑊 → 𝐹 ∈ V ) |
| 4 |
|
imaexg |
⊢ ( 𝐹 ∈ V → ( 𝐹 “ 𝑋 ) ∈ V ) |
| 5 |
|
pwexg |
⊢ ( ( 𝐹 “ 𝑋 ) ∈ V → 𝒫 ( 𝐹 “ 𝑋 ) ∈ V ) |
| 6 |
|
rabexg |
⊢ ( 𝒫 ( 𝐹 “ 𝑋 ) ∈ V → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) |
| 7 |
4 5 6
|
3syl |
⊢ ( 𝐹 ∈ V → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) |
| 9 |
|
simpr |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
| 10 |
|
simpl |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝑗 = 𝐽 ) |
| 11 |
10
|
unieqd |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 12 |
11 1
|
eqtr4di |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ∪ 𝑗 = 𝑋 ) |
| 13 |
9 12
|
imaeq12d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( 𝑓 “ ∪ 𝑗 ) = ( 𝐹 “ 𝑋 ) ) |
| 14 |
13
|
pweqd |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → 𝒫 ( 𝑓 “ ∪ 𝑗 ) = 𝒫 ( 𝐹 “ 𝑋 ) ) |
| 15 |
9
|
cnveqd |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ◡ 𝑓 = ◡ 𝐹 ) |
| 16 |
15
|
imaeq1d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ◡ 𝑓 “ 𝑠 ) = ( ◡ 𝐹 “ 𝑠 ) ) |
| 17 |
16 12
|
ineq12d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) = ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ) |
| 18 |
17 10
|
eleq12d |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → ( ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 ↔ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ) ) |
| 19 |
14 18
|
rabeqbidv |
⊢ ( ( 𝑗 = 𝐽 ∧ 𝑓 = 𝐹 ) → { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 20 |
|
df-qtop |
⊢ qTop = ( 𝑗 ∈ V , 𝑓 ∈ V ↦ { 𝑠 ∈ 𝒫 ( 𝑓 “ ∪ 𝑗 ) ∣ ( ( ◡ 𝑓 “ 𝑠 ) ∩ ∪ 𝑗 ) ∈ 𝑗 } ) |
| 21 |
19 20
|
ovmpoga |
⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ∧ { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 22 |
8 21
|
mpd3an3 |
⊢ ( ( 𝐽 ∈ V ∧ 𝐹 ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |
| 23 |
2 3 22
|
syl2an |
⊢ ( ( 𝐽 ∈ 𝑉 ∧ 𝐹 ∈ 𝑊 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹 “ 𝑋 ) ∣ ( ( ◡ 𝐹 “ 𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } ) |