Metamath Proof Explorer


Theorem qtopval2

Description: Value of the quotient topology function when F is a function on the base set. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtopval.1 𝑋 = 𝐽
Assertion qtopval2 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 𝑌 ∣ ( 𝐹𝑠 ) ∈ 𝐽 } )

Proof

Step Hyp Ref Expression
1 qtopval.1 𝑋 = 𝐽
2 simp1 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝐽𝑉 )
3 fof ( 𝐹 : 𝑍onto𝑌𝐹 : 𝑍𝑌 )
4 3 3ad2ant2 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝐹 : 𝑍𝑌 )
5 uniexg ( 𝐽𝑉 𝐽 ∈ V )
6 5 3ad2ant1 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝐽 ∈ V )
7 1 6 eqeltrid ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝑋 ∈ V )
8 simp3 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝑍𝑋 )
9 7 8 ssexd ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝑍 ∈ V )
10 fex ( ( 𝐹 : 𝑍𝑌𝑍 ∈ V ) → 𝐹 ∈ V )
11 4 9 10 syl2anc ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝐹 ∈ V )
12 1 qtopval ( ( 𝐽𝑉𝐹 ∈ V ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )
13 2 11 12 syl2anc ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } )
14 imassrn ( 𝐹𝑋 ) ⊆ ran 𝐹
15 forn ( 𝐹 : 𝑍onto𝑌 → ran 𝐹 = 𝑌 )
16 15 3ad2ant2 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ran 𝐹 = 𝑌 )
17 14 16 sseqtrid ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐹𝑋 ) ⊆ 𝑌 )
18 foima ( 𝐹 : 𝑍onto𝑌 → ( 𝐹𝑍 ) = 𝑌 )
19 18 3ad2ant2 ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐹𝑍 ) = 𝑌 )
20 imass2 ( 𝑍𝑋 → ( 𝐹𝑍 ) ⊆ ( 𝐹𝑋 ) )
21 8 20 syl ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐹𝑍 ) ⊆ ( 𝐹𝑋 ) )
22 19 21 eqsstrrd ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝑌 ⊆ ( 𝐹𝑋 ) )
23 17 22 eqssd ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐹𝑋 ) = 𝑌 )
24 23 pweqd ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → 𝒫 ( 𝐹𝑋 ) = 𝒫 𝑌 )
25 cnvimass ( 𝐹𝑠 ) ⊆ dom 𝐹
26 25 4 fssdm ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐹𝑠 ) ⊆ 𝑍 )
27 26 8 sstrd ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐹𝑠 ) ⊆ 𝑋 )
28 df-ss ( ( 𝐹𝑠 ) ⊆ 𝑋 ↔ ( ( 𝐹𝑠 ) ∩ 𝑋 ) = ( 𝐹𝑠 ) )
29 27 28 sylib ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( ( 𝐹𝑠 ) ∩ 𝑋 ) = ( 𝐹𝑠 ) )
30 29 eleq1d ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 ↔ ( 𝐹𝑠 ) ∈ 𝐽 ) )
31 24 30 rabeqbidv ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → { 𝑠 ∈ 𝒫 ( 𝐹𝑋 ) ∣ ( ( 𝐹𝑠 ) ∩ 𝑋 ) ∈ 𝐽 } = { 𝑠 ∈ 𝒫 𝑌 ∣ ( 𝐹𝑠 ) ∈ 𝐽 } )
32 13 31 eqtrd ( ( 𝐽𝑉𝐹 : 𝑍onto𝑌𝑍𝑋 ) → ( 𝐽 qTop 𝐹 ) = { 𝑠 ∈ 𝒫 𝑌 ∣ ( 𝐹𝑠 ) ∈ 𝐽 } )