Metamath Proof Explorer


Theorem qtoptop

Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015)

Ref Expression
Hypothesis qtoptop.1 X=J
Assertion qtoptop JTopFFnXJqTopFTop

Proof

Step Hyp Ref Expression
1 qtoptop.1 X=J
2 simpl JTopFFnXJTop
3 id FFnXFFnX
4 1 topopn JTopXJ
5 fnex FFnXXJFV
6 3 4 5 syl2anr JTopFFnXFV
7 fnfun FFnXFunF
8 7 adantl JTopFFnXFunF
9 qtoptop2 JTopFVFunFJqTopFTop
10 2 6 8 9 syl3anc JTopFFnXJqTopFTop