Metamath Proof Explorer


Theorem quoremnn0

Description: Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008)

Ref Expression
Hypotheses quorem.1 Q=AB
quorem.2 R=ABQ
Assertion quoremnn0 A0BQ0R0R<BA=BQ+R

Proof

Step Hyp Ref Expression
1 quorem.1 Q=AB
2 quorem.2 R=ABQ
3 fldivnn0 A0BAB0
4 1 3 eqeltrid A0BQ0
5 nn0z A0A
6 1 2 quoremz ABQR0R<BA=BQ+R
7 5 6 sylan A0BQR0R<BA=BQ+R
8 simpl Q0QQ0
9 8 anim1i Q0QR0Q0R0
10 9 anasss Q0QR0Q0R0
11 10 anim1i Q0QR0R<BA=BQ+RQ0R0R<BA=BQ+R
12 11 anasss Q0QR0R<BA=BQ+RQ0R0R<BA=BQ+R
13 4 7 12 syl2anc A0BQ0R0R<BA=BQ+R