| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quorem.1 |
|
| 2 |
|
quorem.2 |
|
| 3 |
|
fldivnn0 |
|
| 4 |
1 3
|
eqeltrid |
|
| 5 |
|
nnnn0 |
|
| 6 |
5
|
adantl |
|
| 7 |
6 4
|
nn0mulcld |
|
| 8 |
|
simpl |
|
| 9 |
4
|
nn0cnd |
|
| 10 |
|
nncn |
|
| 11 |
10
|
adantl |
|
| 12 |
|
nnne0 |
|
| 13 |
12
|
adantl |
|
| 14 |
9 11 13
|
divcan3d |
|
| 15 |
|
nn0nndivcl |
|
| 16 |
|
flle |
|
| 17 |
15 16
|
syl |
|
| 18 |
1 17
|
eqbrtrid |
|
| 19 |
14 18
|
eqbrtrd |
|
| 20 |
7
|
nn0red |
|
| 21 |
|
nn0re |
|
| 22 |
21
|
adantr |
|
| 23 |
|
nnre |
|
| 24 |
23
|
adantl |
|
| 25 |
|
nngt0 |
|
| 26 |
25
|
adantl |
|
| 27 |
|
lediv1 |
|
| 28 |
20 22 24 26 27
|
syl112anc |
|
| 29 |
19 28
|
mpbird |
|
| 30 |
|
nn0sub2 |
|
| 31 |
7 8 29 30
|
syl3anc |
|
| 32 |
2 31
|
eqeltrid |
|
| 33 |
1
|
oveq2i |
|
| 34 |
|
fraclt1 |
|
| 35 |
15 34
|
syl |
|
| 36 |
33 35
|
eqbrtrid |
|
| 37 |
2
|
oveq1i |
|
| 38 |
|
nn0cn |
|
| 39 |
38
|
adantr |
|
| 40 |
7
|
nn0cnd |
|
| 41 |
10 12
|
jca |
|
| 42 |
41
|
adantl |
|
| 43 |
|
divsubdir |
|
| 44 |
39 40 42 43
|
syl3anc |
|
| 45 |
14
|
oveq2d |
|
| 46 |
44 45
|
eqtrd |
|
| 47 |
37 46
|
eqtrid |
|
| 48 |
10 12
|
dividd |
|
| 49 |
48
|
adantl |
|
| 50 |
36 47 49
|
3brtr4d |
|
| 51 |
32
|
nn0red |
|
| 52 |
|
ltdiv1 |
|
| 53 |
51 24 24 26 52
|
syl112anc |
|
| 54 |
50 53
|
mpbird |
|
| 55 |
2
|
oveq2i |
|
| 56 |
40 39
|
pncan3d |
|
| 57 |
55 56
|
eqtr2id |
|
| 58 |
54 57
|
jca |
|
| 59 |
4 32 58
|
jca31 |
|