| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quorem.1 |
|
| 2 |
|
quorem.2 |
|
| 3 |
|
zre |
|
| 4 |
3
|
adantr |
|
| 5 |
|
nnre |
|
| 6 |
5
|
adantl |
|
| 7 |
|
nnne0 |
|
| 8 |
7
|
adantl |
|
| 9 |
4 6 8
|
redivcld |
|
| 10 |
9
|
flcld |
|
| 11 |
1 10
|
eqeltrid |
|
| 12 |
11
|
zcnd |
|
| 13 |
|
nncn |
|
| 14 |
13
|
adantl |
|
| 15 |
12 14 8
|
divcan3d |
|
| 16 |
|
flle |
|
| 17 |
9 16
|
syl |
|
| 18 |
1 17
|
eqbrtrid |
|
| 19 |
15 18
|
eqbrtrd |
|
| 20 |
|
nnz |
|
| 21 |
20
|
adantl |
|
| 22 |
21 11
|
zmulcld |
|
| 23 |
22
|
zred |
|
| 24 |
|
nngt0 |
|
| 25 |
24
|
adantl |
|
| 26 |
|
lediv1 |
|
| 27 |
23 4 6 25 26
|
syl112anc |
|
| 28 |
19 27
|
mpbird |
|
| 29 |
|
simpl |
|
| 30 |
|
znn0sub |
|
| 31 |
22 29 30
|
syl2anc |
|
| 32 |
28 31
|
mpbid |
|
| 33 |
2 32
|
eqeltrid |
|
| 34 |
1
|
oveq2i |
|
| 35 |
|
fraclt1 |
|
| 36 |
9 35
|
syl |
|
| 37 |
34 36
|
eqbrtrid |
|
| 38 |
2
|
oveq1i |
|
| 39 |
|
zcn |
|
| 40 |
39
|
adantr |
|
| 41 |
22
|
zcnd |
|
| 42 |
13 7
|
jca |
|
| 43 |
42
|
adantl |
|
| 44 |
|
divsubdir |
|
| 45 |
40 41 43 44
|
syl3anc |
|
| 46 |
15
|
oveq2d |
|
| 47 |
45 46
|
eqtrd |
|
| 48 |
38 47
|
eqtrid |
|
| 49 |
13 7
|
dividd |
|
| 50 |
49
|
adantl |
|
| 51 |
37 48 50
|
3brtr4d |
|
| 52 |
33
|
nn0red |
|
| 53 |
|
ltdiv1 |
|
| 54 |
52 6 6 25 53
|
syl112anc |
|
| 55 |
51 54
|
mpbird |
|
| 56 |
2
|
oveq2i |
|
| 57 |
41 40
|
pncan3d |
|
| 58 |
56 57
|
eqtr2id |
|
| 59 |
55 58
|
jca |
|
| 60 |
11 33 59
|
jca31 |
|