Metamath Proof Explorer


Theorem qus0

Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h H=G/𝑠G~QGS
qus0.p 0˙=0G
Assertion qus0 SNrmSGrpG0˙G~QGS=0H

Proof

Step Hyp Ref Expression
1 qusgrp.h H=G/𝑠G~QGS
2 qus0.p 0˙=0G
3 nsgsubg SNrmSGrpGSSubGrpG
4 subgrcl SSubGrpGGGrp
5 3 4 syl SNrmSGrpGGGrp
6 eqid BaseG=BaseG
7 6 2 grpidcl GGrp0˙BaseG
8 5 7 syl SNrmSGrpG0˙BaseG
9 eqid +G=+G
10 eqid +H=+H
11 1 6 9 10 qusadd SNrmSGrpG0˙BaseG0˙BaseG0˙G~QGS+H0˙G~QGS=0˙+G0˙G~QGS
12 8 8 11 mpd3an23 SNrmSGrpG0˙G~QGS+H0˙G~QGS=0˙+G0˙G~QGS
13 6 9 2 grplid GGrp0˙BaseG0˙+G0˙=0˙
14 5 8 13 syl2anc SNrmSGrpG0˙+G0˙=0˙
15 14 eceq1d SNrmSGrpG0˙+G0˙G~QGS=0˙G~QGS
16 12 15 eqtrd SNrmSGrpG0˙G~QGS+H0˙G~QGS=0˙G~QGS
17 1 qusgrp SNrmSGrpGHGrp
18 eqid BaseH=BaseH
19 1 6 18 quseccl SNrmSGrpG0˙BaseG0˙G~QGSBaseH
20 8 19 mpdan SNrmSGrpG0˙G~QGSBaseH
21 eqid 0H=0H
22 18 10 21 grpid HGrp0˙G~QGSBaseH0˙G~QGS+H0˙G~QGS=0˙G~QGS0H=0˙G~QGS
23 17 20 22 syl2anc SNrmSGrpG0˙G~QGS+H0˙G~QGS=0˙G~QGS0H=0˙G~QGS
24 16 23 mpbid SNrmSGrpG0H=0˙G~QGS
25 24 eqcomd SNrmSGrpG0˙G~QGS=0H