Description: If Y is a normal subgroup of G , then the "natural map" from elements to their cosets is a group homomorphism from G to G / Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 18-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusghm.x | |
|
qusghm.h | |
||
qusghm.f | |
||
Assertion | qusghm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusghm.x | |
|
2 | qusghm.h | |
|
3 | qusghm.f | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | nsgsubg | |
|
8 | subgrcl | |
|
9 | 7 8 | syl | |
10 | 2 | qusgrp | |
11 | 2 1 4 | quseccl | |
12 | 11 3 | fmptd | |
13 | 2 1 5 6 | qusadd | |
14 | 13 | 3expb | |
15 | eceq1 | |
|
16 | ovex | |
|
17 | ecexg | |
|
18 | 16 17 | ax-mp | |
19 | 15 3 18 | fvmpt3i | |
20 | 19 | ad2antrl | |
21 | eceq1 | |
|
22 | 21 3 18 | fvmpt3i | |
23 | 22 | ad2antll | |
24 | 20 23 | oveq12d | |
25 | 1 5 | grpcl | |
26 | 25 | 3expb | |
27 | 9 26 | sylan | |
28 | eceq1 | |
|
29 | 28 3 18 | fvmpt3i | |
30 | 27 29 | syl | |
31 | 14 24 30 | 3eqtr4rd | |
32 | 1 4 5 6 9 10 12 31 | isghmd | |