Metamath Proof Explorer


Theorem qusghm

Description: If Y is a normal subgroup of G , then the "natural map" from elements to their cosets is a group homomorphism from G to G / Y . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusghm.x X=BaseG
qusghm.h H=G/𝑠G~QGY
qusghm.f F=xXxG~QGY
Assertion qusghm YNrmSGrpGFGGrpHomH

Proof

Step Hyp Ref Expression
1 qusghm.x X=BaseG
2 qusghm.h H=G/𝑠G~QGY
3 qusghm.f F=xXxG~QGY
4 eqid BaseH=BaseH
5 eqid +G=+G
6 eqid +H=+H
7 nsgsubg YNrmSGrpGYSubGrpG
8 subgrcl YSubGrpGGGrp
9 7 8 syl YNrmSGrpGGGrp
10 2 qusgrp YNrmSGrpGHGrp
11 2 1 4 quseccl YNrmSGrpGxXxG~QGYBaseH
12 11 3 fmptd YNrmSGrpGF:XBaseH
13 2 1 5 6 qusadd YNrmSGrpGyXzXyG~QGY+HzG~QGY=y+GzG~QGY
14 13 3expb YNrmSGrpGyXzXyG~QGY+HzG~QGY=y+GzG~QGY
15 eceq1 x=yxG~QGY=yG~QGY
16 ovex G~QGYV
17 ecexg G~QGYVxG~QGYV
18 16 17 ax-mp xG~QGYV
19 15 3 18 fvmpt3i yXFy=yG~QGY
20 19 ad2antrl YNrmSGrpGyXzXFy=yG~QGY
21 eceq1 x=zxG~QGY=zG~QGY
22 21 3 18 fvmpt3i zXFz=zG~QGY
23 22 ad2antll YNrmSGrpGyXzXFz=zG~QGY
24 20 23 oveq12d YNrmSGrpGyXzXFy+HFz=yG~QGY+HzG~QGY
25 1 5 grpcl GGrpyXzXy+GzX
26 25 3expb GGrpyXzXy+GzX
27 9 26 sylan YNrmSGrpGyXzXy+GzX
28 eceq1 x=y+GzxG~QGY=y+GzG~QGY
29 28 3 18 fvmpt3i y+GzXFy+Gz=y+GzG~QGY
30 27 29 syl YNrmSGrpGyXzXFy+Gz=y+GzG~QGY
31 14 24 30 3eqtr4rd YNrmSGrpGyXzXFy+Gz=Fy+HFz
32 1 4 5 6 9 10 12 31 isghmd YNrmSGrpGFGGrpHomH