Metamath Proof Explorer


Theorem r111

Description: The cumulative hierarchy is a one-to-one function. (Contributed by Mario Carneiro, 19-Apr-2013)

Ref Expression
Assertion r111 R1:On1-1V

Proof

Step Hyp Ref Expression
1 r1fnon R1FnOn
2 dffn2 R1FnOnR1:OnV
3 1 2 mpbi R1:OnV
4 eloni xOnOrdx
5 eloni yOnOrdy
6 ordtri3or OrdxOrdyxyx=yyx
7 4 5 6 syl2an xOnyOnxyx=yyx
8 sdomirr ¬R1yR1y
9 r1sdom yOnxyR1xR1y
10 breq1 R1x=R1yR1xR1yR1yR1y
11 9 10 syl5ibcom yOnxyR1x=R1yR1yR1y
12 8 11 mtoi yOnxy¬R1x=R1y
13 12 3adant1 xOnyOnxy¬R1x=R1y
14 13 pm2.21d xOnyOnxyR1x=R1yx=y
15 14 3expia xOnyOnxyR1x=R1yx=y
16 ax-1 x=yR1x=R1yx=y
17 16 a1i xOnyOnx=yR1x=R1yx=y
18 r1sdom xOnyxR1yR1x
19 breq2 R1x=R1yR1yR1xR1yR1y
20 18 19 syl5ibcom xOnyxR1x=R1yR1yR1y
21 8 20 mtoi xOnyx¬R1x=R1y
22 21 3adant2 xOnyOnyx¬R1x=R1y
23 22 pm2.21d xOnyOnyxR1x=R1yx=y
24 23 3expia xOnyOnyxR1x=R1yx=y
25 15 17 24 3jaod xOnyOnxyx=yyxR1x=R1yx=y
26 7 25 mpd xOnyOnR1x=R1yx=y
27 26 rgen2 xOnyOnR1x=R1yx=y
28 dff13 R1:On1-1VR1:OnVxOnyOnR1x=R1yx=y
29 3 27 28 mpbir2an R1:On1-1V