Metamath Proof Explorer


Theorem r1elwf

Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1elwf AR1BAR1On

Proof

Step Hyp Ref Expression
1 r1funlim FunR1LimdomR1
2 1 simpri LimdomR1
3 limord LimdomR1OrddomR1
4 ordsson OrddomR1domR1On
5 2 3 4 mp2b domR1On
6 elfvdm AR1BBdomR1
7 5 6 sselid AR1BBOn
8 r1tr TrR1B
9 trss TrR1BAR1BAR1B
10 8 9 ax-mp AR1BAR1B
11 elpwg AR1BA𝒫R1BAR1B
12 10 11 mpbird AR1BA𝒫R1B
13 r1sucg BdomR1R1sucB=𝒫R1B
14 6 13 syl AR1BR1sucB=𝒫R1B
15 12 14 eleqtrrd AR1BAR1sucB
16 suceq x=Bsucx=sucB
17 16 fveq2d x=BR1sucx=R1sucB
18 17 eleq2d x=BAR1sucxAR1sucB
19 18 rspcev BOnAR1sucBxOnAR1sucx
20 7 15 19 syl2anc AR1BxOnAR1sucx
21 rankwflemb AR1OnxOnAR1sucx
22 20 21 sylibr AR1BAR1On