Metamath Proof Explorer


Theorem r1elwf

Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion r1elwf A R1 B A R1 On

Proof

Step Hyp Ref Expression
1 r1funlim Fun R1 Lim dom R1
2 1 simpri Lim dom R1
3 limord Lim dom R1 Ord dom R1
4 ordsson Ord dom R1 dom R1 On
5 2 3 4 mp2b dom R1 On
6 elfvdm A R1 B B dom R1
7 5 6 sseldi A R1 B B On
8 r1tr Tr R1 B
9 trss Tr R1 B A R1 B A R1 B
10 8 9 ax-mp A R1 B A R1 B
11 elpwg A R1 B A 𝒫 R1 B A R1 B
12 10 11 mpbird A R1 B A 𝒫 R1 B
13 r1sucg B dom R1 R1 suc B = 𝒫 R1 B
14 6 13 syl A R1 B R1 suc B = 𝒫 R1 B
15 12 14 eleqtrrd A R1 B A R1 suc B
16 suceq x = B suc x = suc B
17 16 fveq2d x = B R1 suc x = R1 suc B
18 17 eleq2d x = B A R1 suc x A R1 suc B
19 18 rspcev B On A R1 suc B x On A R1 suc x
20 7 15 19 syl2anc A R1 B x On A R1 suc x
21 rankwflemb A R1 On x On A R1 suc x
22 20 21 sylibr A R1 B A R1 On