Metamath Proof Explorer


Theorem rabrabi

Description: Abstract builder restricted to another restricted abstract builder with implicit substitution. (Contributed by AV, 2-Aug-2022) Avoid ax-10 , ax-11 and ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis rabrabi.1 x=yχφ
Assertion rabrabi xyA|φ|ψ=xA|χψ

Proof

Step Hyp Ref Expression
1 rabrabi.1 x=yχφ
2 df-rab yA|φ=y|yAφ
3 2 eleq2i xyA|φxy|yAφ
4 df-clab xy|yAφxyyAφ
5 eleq1w y=xyAxA
6 1 bicomd x=yφχ
7 6 equcoms y=xφχ
8 5 7 anbi12d y=xyAφxAχ
9 8 sbievw xyyAφxAχ
10 3 4 9 3bitri xyA|φxAχ
11 10 anbi1i xyA|φψxAχψ
12 anass xAχψxAχψ
13 11 12 bitri xyA|φψxAχψ
14 13 rabbia2 xyA|φ|ψ=xA|χψ