Metamath Proof Explorer


Theorem rabrenfdioph

Description: Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion rabrenfdioph B 0 F : 1 A 1 B a 0 1 A | φ Dioph A b 0 1 B | [˙ b F / a]˙ φ Dioph B

Proof

Step Hyp Ref Expression
1 simpr B 0 F : 1 A 1 B b 0 1 B b 0 1 B
2 simplr B 0 F : 1 A 1 B b 0 1 B F : 1 A 1 B
3 ovex 1 A V
4 3 mapco2 b 0 1 B F : 1 A 1 B b F 0 1 A
5 1 2 4 syl2anc B 0 F : 1 A 1 B b 0 1 B b F 0 1 A
6 5 biantrurd B 0 F : 1 A 1 B b 0 1 B [˙ b F / a]˙ φ b F 0 1 A [˙ b F / a]˙ φ
7 nfcv _ a 0 1 A
8 7 elrabsf b F a 0 1 A | φ b F 0 1 A [˙ b F / a]˙ φ
9 6 8 bitr4di B 0 F : 1 A 1 B b 0 1 B [˙ b F / a]˙ φ b F a 0 1 A | φ
10 9 rabbidva B 0 F : 1 A 1 B b 0 1 B | [˙ b F / a]˙ φ = b 0 1 B | b F a 0 1 A | φ
11 10 3adant3 B 0 F : 1 A 1 B a 0 1 A | φ Dioph A b 0 1 B | [˙ b F / a]˙ φ = b 0 1 B | b F a 0 1 A | φ
12 diophren a 0 1 A | φ Dioph A B 0 F : 1 A 1 B b 0 1 B | b F a 0 1 A | φ Dioph B
13 12 3coml B 0 F : 1 A 1 B a 0 1 A | φ Dioph A b 0 1 B | b F a 0 1 A | φ Dioph B
14 11 13 eqeltrd B 0 F : 1 A 1 B a 0 1 A | φ Dioph A b 0 1 B | [˙ b F / a]˙ φ Dioph B