Metamath Proof Explorer


Theorem diophren

Description: Change variables in a Diophantine set, using class notation. This allows already proved Diophantine sets to be reused in contexts with more variables. (Contributed by Stefan O'Rear, 16-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion diophren S Dioph N M 0 F : 1 N 1 M a 0 1 M | a F S Dioph M

Proof

Step Hyp Ref Expression
1 zex V
2 difexg V V
3 1 2 ax-mp V
4 ominf ¬ ω Fin
5 nnuz = 1
6 0p1e1 0 + 1 = 1
7 6 fveq2i 0 + 1 = 1
8 5 7 eqtr4i = 0 + 1
9 8 difeq2i = 0 + 1
10 0z 0
11 lzenom 0 0 + 1 ω
12 10 11 ax-mp 0 + 1 ω
13 9 12 eqbrtri ω
14 enfi ω Fin ω Fin
15 13 14 ax-mp Fin ω Fin
16 4 15 mtbir ¬ Fin
17 incom =
18 disjdif =
19 17 18 eqtri =
20 3 16 19 eldioph4b S Dioph N N 0 b mzPoly 1 N S = c 0 1 N | d 0 b c d = 0
21 simpr M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M a 0 1 M
22 simp-4r M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M F : 1 N 1 M
23 ovex 1 N V
24 23 mapco2 a 0 1 M F : 1 N 1 M a F 0 1 N
25 21 22 24 syl2anc M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M a F 0 1 N
26 uneq1 c = a F c d = a F d
27 26 fveqeq2d c = a F b c d = 0 b a F d = 0
28 27 rexbidv c = a F d 0 b c d = 0 d 0 b a F d = 0
29 28 elrab3 a F 0 1 N a F c 0 1 N | d 0 b c d = 0 d 0 b a F d = 0
30 25 29 syl M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M a F c 0 1 N | d 0 b c d = 0 d 0 b a F d = 0
31 simp-5r M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 F : 1 N 1 M
32 simplr M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 a 0 1 M
33 simpr M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 d 0
34 coundi a d F I = a d F a d I
35 coundir a d F = a F d F
36 elmapi d 0 d : 0
37 36 3ad2ant3 F : 1 N 1 M a 0 1 M d 0 d : 0
38 simp1 F : 1 N 1 M a 0 1 M d 0 F : 1 N 1 M
39 incom 1 M = 1 M
40 fz1ssnn 1 M
41 ssdisj 1 M = 1 M =
42 40 18 41 mp2an 1 M =
43 39 42 eqtri 1 M =
44 43 a1i F : 1 N 1 M a 0 1 M d 0 1 M =
45 coeq0i d : 0 F : 1 N 1 M 1 M = d F =
46 37 38 44 45 syl3anc F : 1 N 1 M a 0 1 M d 0 d F =
47 46 uneq2d F : 1 N 1 M a 0 1 M d 0 a F d F = a F
48 35 47 syl5eq F : 1 N 1 M a 0 1 M d 0 a d F = a F
49 un0 a F = a F
50 48 49 eqtrdi F : 1 N 1 M a 0 1 M d 0 a d F = a F
51 coundir a d I = a I d I
52 elmapi a 0 1 M a : 1 M 0
53 52 3ad2ant2 F : 1 N 1 M a 0 1 M d 0 a : 1 M 0
54 f1oi I : 1-1 onto
55 f1of I : 1-1 onto I :
56 54 55 ax-mp I :
57 coeq0i a : 1 M 0 I : 1 M = a I =
58 56 42 57 mp3an23 a : 1 M 0 a I =
59 53 58 syl F : 1 N 1 M a 0 1 M d 0 a I =
60 coires1 d I = d
61 ffn d : 0 d Fn
62 fnresdm d Fn d = d
63 36 61 62 3syl d 0 d = d
64 60 63 syl5eq d 0 d I = d
65 64 3ad2ant3 F : 1 N 1 M a 0 1 M d 0 d I = d
66 59 65 uneq12d F : 1 N 1 M a 0 1 M d 0 a I d I = d
67 51 66 syl5eq F : 1 N 1 M a 0 1 M d 0 a d I = d
68 uncom d = d
69 un0 d = d
70 68 69 eqtri d = d
71 67 70 eqtrdi F : 1 N 1 M a 0 1 M d 0 a d I = d
72 50 71 uneq12d F : 1 N 1 M a 0 1 M d 0 a d F a d I = a F d
73 34 72 syl5req F : 1 N 1 M a 0 1 M d 0 a F d = a d F I
74 31 32 33 73 syl3anc M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 a F d = a d F I
75 74 fveq2d M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 b a F d = b a d F I
76 nn0ssz 0
77 mapss V 0 0 1 M 1 M
78 1 76 77 mp2an 0 1 M 1 M
79 42 reseq2i a 1 M = a
80 res0 a =
81 79 80 eqtri a 1 M =
82 42 reseq2i d 1 M = d
83 res0 d =
84 82 83 eqtri d 1 M =
85 81 84 eqtr4i a 1 M = d 1 M
86 elmapresaun a 0 1 M d 0 a 1 M = d 1 M a d 0 1 M
87 uncom 1 M = 1 M
88 87 oveq2i 0 1 M = 0 1 M
89 86 88 eleqtrdi a 0 1 M d 0 a 1 M = d 1 M a d 0 1 M
90 85 89 mp3an3 a 0 1 M d 0 a d 0 1 M
91 78 90 sseldi a 0 1 M d 0 a d 1 M
92 91 adantll M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 a d 1 M
93 coeq1 e = a d e F I = a d F I
94 93 fveq2d e = a d b e F I = b a d F I
95 eqid e 1 M b e F I = e 1 M b e F I
96 fvex b a d F I V
97 94 95 96 fvmpt a d 1 M e 1 M b e F I a d = b a d F I
98 92 97 syl M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 e 1 M b e F I a d = b a d F I
99 75 98 eqtr4d M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 b a F d = e 1 M b e F I a d
100 99 eqeq1d M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 b a F d = 0 e 1 M b e F I a d = 0
101 100 rexbidva M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M d 0 b a F d = 0 d 0 e 1 M b e F I a d = 0
102 30 101 bitrd M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M a F c 0 1 N | d 0 b c d = 0 d 0 e 1 M b e F I a d = 0
103 102 rabbidva M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M | a F c 0 1 N | d 0 b c d = 0 = a 0 1 M | d 0 e 1 M b e F I a d = 0
104 simplll M 0 F : 1 N 1 M N 0 b mzPoly 1 N M 0
105 ovex 1 M V
106 3 105 unex 1 M V
107 106 a1i M 0 F : 1 N 1 M N 0 b mzPoly 1 N 1 M V
108 simpr M 0 F : 1 N 1 M N 0 b mzPoly 1 N b mzPoly 1 N
109 56 a1i F : 1 N 1 M I :
110 id F : 1 N 1 M F : 1 N 1 M
111 incom 1 N = 1 N
112 fz1ssnn 1 N
113 ssdisj 1 N = 1 N =
114 112 18 113 mp2an 1 N =
115 111 114 eqtri 1 N =
116 115 a1i F : 1 N 1 M 1 N =
117 fun I : F : 1 N 1 M 1 N = I F : 1 N 1 M
118 109 110 116 117 syl21anc F : 1 N 1 M I F : 1 N 1 M
119 uncom I F = F I
120 119 feq1i I F : 1 N 1 M F I : 1 N 1 M
121 118 120 sylib F : 1 N 1 M F I : 1 N 1 M
122 121 ad3antlr M 0 F : 1 N 1 M N 0 b mzPoly 1 N F I : 1 N 1 M
123 mzprename 1 M V b mzPoly 1 N F I : 1 N 1 M e 1 M b e F I mzPoly 1 M
124 107 108 122 123 syl3anc M 0 F : 1 N 1 M N 0 b mzPoly 1 N e 1 M b e F I mzPoly 1 M
125 3 16 19 eldioph4i M 0 e 1 M b e F I mzPoly 1 M a 0 1 M | d 0 e 1 M b e F I a d = 0 Dioph M
126 104 124 125 syl2anc M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M | d 0 e 1 M b e F I a d = 0 Dioph M
127 103 126 eqeltrd M 0 F : 1 N 1 M N 0 b mzPoly 1 N a 0 1 M | a F c 0 1 N | d 0 b c d = 0 Dioph M
128 eleq2 S = c 0 1 N | d 0 b c d = 0 a F S a F c 0 1 N | d 0 b c d = 0
129 128 rabbidv S = c 0 1 N | d 0 b c d = 0 a 0 1 M | a F S = a 0 1 M | a F c 0 1 N | d 0 b c d = 0
130 129 eleq1d S = c 0 1 N | d 0 b c d = 0 a 0 1 M | a F S Dioph M a 0 1 M | a F c 0 1 N | d 0 b c d = 0 Dioph M
131 127 130 syl5ibrcom M 0 F : 1 N 1 M N 0 b mzPoly 1 N S = c 0 1 N | d 0 b c d = 0 a 0 1 M | a F S Dioph M
132 131 rexlimdva M 0 F : 1 N 1 M N 0 b mzPoly 1 N S = c 0 1 N | d 0 b c d = 0 a 0 1 M | a F S Dioph M
133 132 expimpd M 0 F : 1 N 1 M N 0 b mzPoly 1 N S = c 0 1 N | d 0 b c d = 0 a 0 1 M | a F S Dioph M
134 20 133 syl5bi M 0 F : 1 N 1 M S Dioph N a 0 1 M | a F S Dioph M
135 134 impcom S Dioph N M 0 F : 1 N 1 M a 0 1 M | a F S Dioph M
136 135 3impb S Dioph N M 0 F : 1 N 1 M a 0 1 M | a F S Dioph M