| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zex |
|
| 2 |
|
difexg |
|
| 3 |
1 2
|
ax-mp |
|
| 4 |
|
ominf |
|
| 5 |
|
nnuz |
|
| 6 |
|
0p1e1 |
|
| 7 |
6
|
fveq2i |
|
| 8 |
5 7
|
eqtr4i |
|
| 9 |
8
|
difeq2i |
|
| 10 |
|
0z |
|
| 11 |
|
lzenom |
|
| 12 |
10 11
|
ax-mp |
|
| 13 |
9 12
|
eqbrtri |
|
| 14 |
|
enfi |
|
| 15 |
13 14
|
ax-mp |
|
| 16 |
4 15
|
mtbir |
|
| 17 |
|
disjdifr |
|
| 18 |
3 16 17
|
eldioph4b |
|
| 19 |
|
simpr |
|
| 20 |
|
simp-4r |
|
| 21 |
|
ovex |
|
| 22 |
21
|
mapco2 |
|
| 23 |
19 20 22
|
syl2anc |
|
| 24 |
|
uneq1 |
|
| 25 |
24
|
fveqeq2d |
|
| 26 |
25
|
rexbidv |
|
| 27 |
26
|
elrab3 |
|
| 28 |
23 27
|
syl |
|
| 29 |
|
simp-5r |
|
| 30 |
|
simplr |
|
| 31 |
|
simpr |
|
| 32 |
|
coundi |
|
| 33 |
|
coundir |
|
| 34 |
|
elmapi |
|
| 35 |
34
|
3ad2ant3 |
|
| 36 |
|
simp1 |
|
| 37 |
|
incom |
|
| 38 |
|
fz1ssnn |
|
| 39 |
|
disjdif |
|
| 40 |
|
ssdisj |
|
| 41 |
38 39 40
|
mp2an |
|
| 42 |
37 41
|
eqtri |
|
| 43 |
42
|
a1i |
|
| 44 |
|
coeq0i |
|
| 45 |
35 36 43 44
|
syl3anc |
|
| 46 |
45
|
uneq2d |
|
| 47 |
33 46
|
eqtrid |
|
| 48 |
|
un0 |
|
| 49 |
47 48
|
eqtrdi |
|
| 50 |
|
coundir |
|
| 51 |
|
elmapi |
|
| 52 |
51
|
3ad2ant2 |
|
| 53 |
|
f1oi |
|
| 54 |
|
f1of |
|
| 55 |
53 54
|
ax-mp |
|
| 56 |
|
coeq0i |
|
| 57 |
55 41 56
|
mp3an23 |
|
| 58 |
52 57
|
syl |
|
| 59 |
|
coires1 |
|
| 60 |
|
ffn |
|
| 61 |
|
fnresdm |
|
| 62 |
34 60 61
|
3syl |
|
| 63 |
59 62
|
eqtrid |
|
| 64 |
63
|
3ad2ant3 |
|
| 65 |
58 64
|
uneq12d |
|
| 66 |
50 65
|
eqtrid |
|
| 67 |
|
uncom |
|
| 68 |
|
un0 |
|
| 69 |
67 68
|
eqtri |
|
| 70 |
66 69
|
eqtrdi |
|
| 71 |
49 70
|
uneq12d |
|
| 72 |
32 71
|
eqtr2id |
|
| 73 |
29 30 31 72
|
syl3anc |
|
| 74 |
73
|
fveq2d |
|
| 75 |
|
nn0ssz |
|
| 76 |
|
mapss |
|
| 77 |
1 75 76
|
mp2an |
|
| 78 |
41
|
reseq2i |
|
| 79 |
|
res0 |
|
| 80 |
78 79
|
eqtri |
|
| 81 |
41
|
reseq2i |
|
| 82 |
|
res0 |
|
| 83 |
81 82
|
eqtri |
|
| 84 |
80 83
|
eqtr4i |
|
| 85 |
|
elmapresaun |
|
| 86 |
|
uncom |
|
| 87 |
86
|
oveq2i |
|
| 88 |
85 87
|
eleqtrdi |
|
| 89 |
84 88
|
mp3an3 |
|
| 90 |
77 89
|
sselid |
|
| 91 |
90
|
adantll |
|
| 92 |
|
coeq1 |
|
| 93 |
92
|
fveq2d |
|
| 94 |
|
eqid |
|
| 95 |
|
fvex |
|
| 96 |
93 94 95
|
fvmpt |
|
| 97 |
91 96
|
syl |
|
| 98 |
74 97
|
eqtr4d |
|
| 99 |
98
|
eqeq1d |
|
| 100 |
99
|
rexbidva |
|
| 101 |
28 100
|
bitrd |
|
| 102 |
101
|
rabbidva |
|
| 103 |
|
simplll |
|
| 104 |
|
ovex |
|
| 105 |
3 104
|
unex |
|
| 106 |
105
|
a1i |
|
| 107 |
|
simpr |
|
| 108 |
55
|
a1i |
|
| 109 |
|
id |
|
| 110 |
|
incom |
|
| 111 |
|
fz1ssnn |
|
| 112 |
|
ssdisj |
|
| 113 |
111 39 112
|
mp2an |
|
| 114 |
110 113
|
eqtri |
|
| 115 |
114
|
a1i |
|
| 116 |
|
fun |
|
| 117 |
108 109 115 116
|
syl21anc |
|
| 118 |
|
uncom |
|
| 119 |
118
|
feq1i |
|
| 120 |
117 119
|
sylib |
|
| 121 |
120
|
ad3antlr |
|
| 122 |
|
mzprename |
|
| 123 |
106 107 121 122
|
syl3anc |
|
| 124 |
3 16 17
|
eldioph4i |
|
| 125 |
103 123 124
|
syl2anc |
|
| 126 |
102 125
|
eqeltrd |
|
| 127 |
|
eleq2 |
|
| 128 |
127
|
rabbidv |
|
| 129 |
128
|
eleq1d |
|
| 130 |
126 129
|
syl5ibrcom |
|
| 131 |
130
|
rexlimdva |
|
| 132 |
131
|
expimpd |
|
| 133 |
18 132
|
biimtrid |
|
| 134 |
133
|
impcom |
|
| 135 |
134
|
3impb |
|