Metamath Proof Explorer


Theorem eldioph4i

Description: Forward-only version of eldioph4b . (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Hypotheses eldioph4b.a W V
eldioph4b.b ¬ W Fin
eldioph4b.c W =
Assertion eldioph4i N 0 P mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 Dioph N

Proof

Step Hyp Ref Expression
1 eldioph4b.a W V
2 eldioph4b.b ¬ W Fin
3 eldioph4b.c W =
4 uneq1 t = a t w = a w
5 4 fveqeq2d t = a P t w = 0 P a w = 0
6 5 rexbidv t = a w 0 W P t w = 0 w 0 W P a w = 0
7 uneq2 w = b a w = a b
8 7 fveqeq2d w = b P a w = 0 P a b = 0
9 8 cbvrexvw w 0 W P a w = 0 b 0 W P a b = 0
10 6 9 bitrdi t = a w 0 W P t w = 0 b 0 W P a b = 0
11 10 cbvrabv t 0 1 N | w 0 W P t w = 0 = a 0 1 N | b 0 W P a b = 0
12 fveq1 p = P p a b = P a b
13 12 eqeq1d p = P p a b = 0 P a b = 0
14 13 rexbidv p = P b 0 W p a b = 0 b 0 W P a b = 0
15 14 rabbidv p = P a 0 1 N | b 0 W p a b = 0 = a 0 1 N | b 0 W P a b = 0
16 15 rspceeqv P mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 = a 0 1 N | b 0 W P a b = 0 p mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 = a 0 1 N | b 0 W p a b = 0
17 11 16 mpan2 P mzPoly W 1 N p mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 = a 0 1 N | b 0 W p a b = 0
18 17 anim2i N 0 P mzPoly W 1 N N 0 p mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 = a 0 1 N | b 0 W p a b = 0
19 1 2 3 eldioph4b t 0 1 N | w 0 W P t w = 0 Dioph N N 0 p mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 = a 0 1 N | b 0 W p a b = 0
20 18 19 sylibr N 0 P mzPoly W 1 N t 0 1 N | w 0 W P t w = 0 Dioph N