Step |
Hyp |
Ref |
Expression |
1 |
|
eldioph4b.a |
⊢ 𝑊 ∈ V |
2 |
|
eldioph4b.b |
⊢ ¬ 𝑊 ∈ Fin |
3 |
|
eldioph4b.c |
⊢ ( 𝑊 ∩ ℕ ) = ∅ |
4 |
|
uneq1 |
⊢ ( 𝑡 = 𝑎 → ( 𝑡 ∪ 𝑤 ) = ( 𝑎 ∪ 𝑤 ) ) |
5 |
4
|
fveqeq2d |
⊢ ( 𝑡 = 𝑎 → ( ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ↔ ( 𝑃 ‘ ( 𝑎 ∪ 𝑤 ) ) = 0 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑡 = 𝑎 → ( ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ↔ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑤 ) ) = 0 ) ) |
7 |
|
uneq2 |
⊢ ( 𝑤 = 𝑏 → ( 𝑎 ∪ 𝑤 ) = ( 𝑎 ∪ 𝑏 ) ) |
8 |
7
|
fveqeq2d |
⊢ ( 𝑤 = 𝑏 → ( ( 𝑃 ‘ ( 𝑎 ∪ 𝑤 ) ) = 0 ↔ ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ) ) |
9 |
8
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑤 ) ) = 0 ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ) |
10 |
6 9
|
bitrdi |
⊢ ( 𝑡 = 𝑎 → ( ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ) ) |
11 |
10
|
cbvrabv |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } |
12 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ↔ ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ) ) |
14 |
13
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ↔ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 ) ) |
15 |
14
|
rabbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } ) |
16 |
15
|
rspceeqv |
⊢ ( ( 𝑃 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } ) → ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } ) |
17 |
11 16
|
mpan2 |
⊢ ( 𝑃 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } ) |
18 |
17
|
anim2i |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) → ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } ) ) |
19 |
1 2 3
|
eldioph4b |
⊢ ( { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑏 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑎 ∪ 𝑏 ) ) = 0 } ) ) |
20 |
18 19
|
sylibr |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) → { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑃 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } ∈ ( Dioph ‘ 𝑁 ) ) |