| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldioph4b.a | ⊢ 𝑊  ∈  V | 
						
							| 2 |  | eldioph4b.b | ⊢ ¬  𝑊  ∈  Fin | 
						
							| 3 |  | eldioph4b.c | ⊢ ( 𝑊  ∩  ℕ )  =  ∅ | 
						
							| 4 |  | uneq1 | ⊢ ( 𝑡  =  𝑎  →  ( 𝑡  ∪  𝑤 )  =  ( 𝑎  ∪  𝑤 ) ) | 
						
							| 5 | 4 | fveqeq2d | ⊢ ( 𝑡  =  𝑎  →  ( ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0  ↔  ( 𝑃 ‘ ( 𝑎  ∪  𝑤 ) )  =  0 ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑡  =  𝑎  →  ( ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0  ↔  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑤 ) )  =  0 ) ) | 
						
							| 7 |  | uneq2 | ⊢ ( 𝑤  =  𝑏  →  ( 𝑎  ∪  𝑤 )  =  ( 𝑎  ∪  𝑏 ) ) | 
						
							| 8 | 7 | fveqeq2d | ⊢ ( 𝑤  =  𝑏  →  ( ( 𝑃 ‘ ( 𝑎  ∪  𝑤 ) )  =  0  ↔  ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 ) ) | 
						
							| 9 | 8 | cbvrexvw | ⊢ ( ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑤 ) )  =  0  ↔  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 ) | 
						
							| 10 | 6 9 | bitrdi | ⊢ ( 𝑡  =  𝑎  →  ( ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0  ↔  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 ) ) | 
						
							| 11 | 10 | cbvrabv | ⊢ { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑝  =  𝑃  →  ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) ) ) | 
						
							| 13 | 12 | eqeq1d | ⊢ ( 𝑝  =  𝑃  →  ( ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0  ↔  ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 ) ) | 
						
							| 14 | 13 | rexbidv | ⊢ ( 𝑝  =  𝑃  →  ( ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0  ↔  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 ) ) | 
						
							| 15 | 14 | rabbidv | ⊢ ( 𝑝  =  𝑃  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } ) | 
						
							| 16 | 15 | rspceeqv | ⊢ ( ( 𝑃  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) )  ∧  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } )  →  ∃ 𝑝  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) ) { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } ) | 
						
							| 17 | 11 16 | mpan2 | ⊢ ( 𝑃  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) )  →  ∃ 𝑝  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) ) { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } ) | 
						
							| 18 | 17 | anim2i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) ) )  →  ( 𝑁  ∈  ℕ0  ∧  ∃ 𝑝  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) ) { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } ) ) | 
						
							| 19 | 1 2 3 | eldioph4b | ⊢ ( { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  ∈  ( Dioph ‘ 𝑁 )  ↔  ( 𝑁  ∈  ℕ0  ∧  ∃ 𝑝  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) ) { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑏  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑝 ‘ ( 𝑎  ∪  𝑏 ) )  =  0 } ) ) | 
						
							| 20 | 18 19 | sylibr | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝑃  ∈  ( mzPoly ‘ ( 𝑊  ∪  ( 1 ... 𝑁 ) ) ) )  →  { 𝑡  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑤  ∈  ( ℕ0  ↑m  𝑊 ) ( 𝑃 ‘ ( 𝑡  ∪  𝑤 ) )  =  0 }  ∈  ( Dioph ‘ 𝑁 ) ) |