| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zex | ⊢ ℤ  ∈  V | 
						
							| 2 |  | difexg | ⊢ ( ℤ  ∈  V  →  ( ℤ  ∖  ℕ )  ∈  V ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( ℤ  ∖  ℕ )  ∈  V | 
						
							| 4 |  | ominf | ⊢ ¬  ω  ∈  Fin | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 |  | 0p1e1 | ⊢ ( 0  +  1 )  =  1 | 
						
							| 7 | 6 | fveq2i | ⊢ ( ℤ≥ ‘ ( 0  +  1 ) )  =  ( ℤ≥ ‘ 1 ) | 
						
							| 8 | 5 7 | eqtr4i | ⊢ ℕ  =  ( ℤ≥ ‘ ( 0  +  1 ) ) | 
						
							| 9 | 8 | difeq2i | ⊢ ( ℤ  ∖  ℕ )  =  ( ℤ  ∖  ( ℤ≥ ‘ ( 0  +  1 ) ) ) | 
						
							| 10 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 11 |  | lzenom | ⊢ ( 0  ∈  ℤ  →  ( ℤ  ∖  ( ℤ≥ ‘ ( 0  +  1 ) ) )  ≈  ω ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ℤ  ∖  ( ℤ≥ ‘ ( 0  +  1 ) ) )  ≈  ω | 
						
							| 13 | 9 12 | eqbrtri | ⊢ ( ℤ  ∖  ℕ )  ≈  ω | 
						
							| 14 |  | enfi | ⊢ ( ( ℤ  ∖  ℕ )  ≈  ω  →  ( ( ℤ  ∖  ℕ )  ∈  Fin  ↔  ω  ∈  Fin ) ) | 
						
							| 15 | 13 14 | ax-mp | ⊢ ( ( ℤ  ∖  ℕ )  ∈  Fin  ↔  ω  ∈  Fin ) | 
						
							| 16 | 4 15 | mtbir | ⊢ ¬  ( ℤ  ∖  ℕ )  ∈  Fin | 
						
							| 17 |  | disjdifr | ⊢ ( ( ℤ  ∖  ℕ )  ∩  ℕ )  =  ∅ | 
						
							| 18 | 3 16 17 | eldioph4b | ⊢ ( 𝑆  ∈  ( Dioph ‘ 𝑁 )  ↔  ( 𝑁  ∈  ℕ0  ∧  ∃ 𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  →  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) ) | 
						
							| 20 |  | simp-4r | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 21 |  | ovex | ⊢ ( 1 ... 𝑁 )  ∈  V | 
						
							| 22 | 21 | mapco2 | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  →  ( 𝑎  ∘  𝐹 )  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 23 | 19 20 22 | syl2anc | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  →  ( 𝑎  ∘  𝐹 )  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) ) ) | 
						
							| 24 |  | uneq1 | ⊢ ( 𝑐  =  ( 𝑎  ∘  𝐹 )  →  ( 𝑐  ∪  𝑑 )  =  ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) ) | 
						
							| 25 | 24 | fveqeq2d | ⊢ ( 𝑐  =  ( 𝑎  ∘  𝐹 )  →  ( ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0  ↔  ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 26 | 25 | rexbidv | ⊢ ( 𝑐  =  ( 𝑎  ∘  𝐹 )  →  ( ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0  ↔  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 27 | 26 | elrab3 | ⊢ ( ( 𝑎  ∘  𝐹 )  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  →  ( ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  ↔  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 28 | 23 27 | syl | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  →  ( ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  ↔  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 29 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 30 |  | simplr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 32 |  | coundi | ⊢ ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) )  =  ( ( ( 𝑎  ∪  𝑑 )  ∘  𝐹 )  ∪  ( ( 𝑎  ∪  𝑑 )  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) | 
						
							| 33 |  | coundir | ⊢ ( ( 𝑎  ∪  𝑑 )  ∘  𝐹 )  =  ( ( 𝑎  ∘  𝐹 )  ∪  ( 𝑑  ∘  𝐹 ) ) | 
						
							| 34 |  | elmapi | ⊢ ( 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) )  →  𝑑 : ( ℤ  ∖  ℕ ) ⟶ ℕ0 ) | 
						
							| 35 | 34 | 3ad2ant3 | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  𝑑 : ( ℤ  ∖  ℕ ) ⟶ ℕ0 ) | 
						
							| 36 |  | simp1 | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 37 |  | incom | ⊢ ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑀 ) )  =  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) | 
						
							| 38 |  | fz1ssnn | ⊢ ( 1 ... 𝑀 )  ⊆  ℕ | 
						
							| 39 |  | disjdif | ⊢ ( ℕ  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ | 
						
							| 40 |  | ssdisj | ⊢ ( ( ( 1 ... 𝑀 )  ⊆  ℕ  ∧  ( ℕ  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ )  →  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ ) | 
						
							| 41 | 38 39 40 | mp2an | ⊢ ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ | 
						
							| 42 | 37 41 | eqtri | ⊢ ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑀 ) )  =  ∅ | 
						
							| 43 | 42 | a1i | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑀 ) )  =  ∅ ) | 
						
							| 44 |  | coeq0i | ⊢ ( ( 𝑑 : ( ℤ  ∖  ℕ ) ⟶ ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑀 ) )  =  ∅ )  →  ( 𝑑  ∘  𝐹 )  =  ∅ ) | 
						
							| 45 | 35 36 43 44 | syl3anc | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑑  ∘  𝐹 )  =  ∅ ) | 
						
							| 46 | 45 | uneq2d | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∘  𝐹 )  ∪  ( 𝑑  ∘  𝐹 ) )  =  ( ( 𝑎  ∘  𝐹 )  ∪  ∅ ) ) | 
						
							| 47 | 33 46 | eqtrid | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∪  𝑑 )  ∘  𝐹 )  =  ( ( 𝑎  ∘  𝐹 )  ∪  ∅ ) ) | 
						
							| 48 |  | un0 | ⊢ ( ( 𝑎  ∘  𝐹 )  ∪  ∅ )  =  ( 𝑎  ∘  𝐹 ) | 
						
							| 49 | 47 48 | eqtrdi | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∪  𝑑 )  ∘  𝐹 )  =  ( 𝑎  ∘  𝐹 ) ) | 
						
							| 50 |  | coundir | ⊢ ( ( 𝑎  ∪  𝑑 )  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  ( ( 𝑎  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  ∪  ( 𝑑  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) | 
						
							| 51 |  | elmapi | ⊢ ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  →  𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0 ) | 
						
							| 52 | 51 | 3ad2ant2 | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0 ) | 
						
							| 53 |  | f1oi | ⊢ (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) –1-1-onto→ ( ℤ  ∖  ℕ ) | 
						
							| 54 |  | f1of | ⊢ ( (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) –1-1-onto→ ( ℤ  ∖  ℕ )  →  (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) ⟶ ( ℤ  ∖  ℕ ) ) | 
						
							| 55 | 53 54 | ax-mp | ⊢ (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) ⟶ ( ℤ  ∖  ℕ ) | 
						
							| 56 |  | coeq0i | ⊢ ( ( 𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0  ∧  (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) ⟶ ( ℤ  ∖  ℕ )  ∧  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ )  →  ( 𝑎  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  ∅ ) | 
						
							| 57 | 55 41 56 | mp3an23 | ⊢ ( 𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0  →  ( 𝑎  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  ∅ ) | 
						
							| 58 | 52 57 | syl | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑎  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  ∅ ) | 
						
							| 59 |  | coires1 | ⊢ ( 𝑑  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  ( 𝑑  ↾  ( ℤ  ∖  ℕ ) ) | 
						
							| 60 |  | ffn | ⊢ ( 𝑑 : ( ℤ  ∖  ℕ ) ⟶ ℕ0  →  𝑑  Fn  ( ℤ  ∖  ℕ ) ) | 
						
							| 61 |  | fnresdm | ⊢ ( 𝑑  Fn  ( ℤ  ∖  ℕ )  →  ( 𝑑  ↾  ( ℤ  ∖  ℕ ) )  =  𝑑 ) | 
						
							| 62 | 34 60 61 | 3syl | ⊢ ( 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) )  →  ( 𝑑  ↾  ( ℤ  ∖  ℕ ) )  =  𝑑 ) | 
						
							| 63 | 59 62 | eqtrid | ⊢ ( 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) )  →  ( 𝑑  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  𝑑 ) | 
						
							| 64 | 63 | 3ad2ant3 | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑑  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  𝑑 ) | 
						
							| 65 | 58 64 | uneq12d | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  ∪  ( 𝑑  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) )  =  ( ∅  ∪  𝑑 ) ) | 
						
							| 66 | 50 65 | eqtrid | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∪  𝑑 )  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  ( ∅  ∪  𝑑 ) ) | 
						
							| 67 |  | uncom | ⊢ ( ∅  ∪  𝑑 )  =  ( 𝑑  ∪  ∅ ) | 
						
							| 68 |  | un0 | ⊢ ( 𝑑  ∪  ∅ )  =  𝑑 | 
						
							| 69 | 67 68 | eqtri | ⊢ ( ∅  ∪  𝑑 )  =  𝑑 | 
						
							| 70 | 66 69 | eqtrdi | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∪  𝑑 )  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) )  =  𝑑 ) | 
						
							| 71 | 49 70 | uneq12d | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( ( 𝑎  ∪  𝑑 )  ∘  𝐹 )  ∪  ( ( 𝑎  ∪  𝑑 )  ∘  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) )  =  ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) ) | 
						
							| 72 | 32 71 | eqtr2id | ⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 )  =  ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) | 
						
							| 73 | 29 30 31 72 | syl3anc | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 )  =  ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) | 
						
							| 74 | 73 | fveq2d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  ( 𝑏 ‘ ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) | 
						
							| 75 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 76 |  | mapss | ⊢ ( ( ℤ  ∈  V  ∧  ℕ0  ⊆  ℤ )  →  ( ℕ0  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ⊆  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 77 | 1 75 76 | mp2an | ⊢ ( ℕ0  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ⊆  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 78 | 41 | reseq2i | ⊢ ( 𝑎  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ( 𝑎  ↾  ∅ ) | 
						
							| 79 |  | res0 | ⊢ ( 𝑎  ↾  ∅ )  =  ∅ | 
						
							| 80 | 78 79 | eqtri | ⊢ ( 𝑎  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ∅ | 
						
							| 81 | 41 | reseq2i | ⊢ ( 𝑑  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ( 𝑑  ↾  ∅ ) | 
						
							| 82 |  | res0 | ⊢ ( 𝑑  ↾  ∅ )  =  ∅ | 
						
							| 83 | 81 82 | eqtri | ⊢ ( 𝑑  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ∅ | 
						
							| 84 | 80 83 | eqtr4i | ⊢ ( 𝑎  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ( 𝑑  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 85 |  | elmapresaun | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) )  ∧  ( 𝑎  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ( 𝑑  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) ) )  →  ( 𝑎  ∪  𝑑 )  ∈  ( ℕ0  ↑m  ( ( 1 ... 𝑀 )  ∪  ( ℤ  ∖  ℕ ) ) ) ) | 
						
							| 86 |  | uncom | ⊢ ( ( 1 ... 𝑀 )  ∪  ( ℤ  ∖  ℕ ) )  =  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) | 
						
							| 87 | 86 | oveq2i | ⊢ ( ℕ0  ↑m  ( ( 1 ... 𝑀 )  ∪  ( ℤ  ∖  ℕ ) ) )  =  ( ℕ0  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 88 | 85 87 | eleqtrdi | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) )  ∧  ( 𝑎  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) )  =  ( 𝑑  ↾  ( ( 1 ... 𝑀 )  ∩  ( ℤ  ∖  ℕ ) ) ) )  →  ( 𝑎  ∪  𝑑 )  ∈  ( ℕ0  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 89 | 84 88 | mp3an3 | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑎  ∪  𝑑 )  ∈  ( ℕ0  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 90 | 77 89 | sselid | ⊢ ( ( 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑎  ∪  𝑑 )  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 91 | 90 | adantll | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑎  ∪  𝑑 )  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 92 |  | coeq1 | ⊢ ( 𝑒  =  ( 𝑎  ∪  𝑑 )  →  ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) )  =  ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) | 
						
							| 93 | 92 | fveq2d | ⊢ ( 𝑒  =  ( 𝑎  ∪  𝑑 )  →  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) )  =  ( 𝑏 ‘ ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) | 
						
							| 94 |  | eqid | ⊢ ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) )  =  ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) | 
						
							| 95 |  | fvex | ⊢ ( 𝑏 ‘ ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) )  ∈  V | 
						
							| 96 | 93 94 95 | fvmpt | ⊢ ( ( 𝑎  ∪  𝑑 )  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  →  ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  ( 𝑏 ‘ ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) | 
						
							| 97 | 91 96 | syl | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  ( 𝑏 ‘ ( ( 𝑎  ∪  𝑑 )  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) | 
						
							| 98 | 74 97 | eqtr4d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) ) ) | 
						
							| 99 | 98 | eqeq1d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  ∧  𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) )  →  ( ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  0  ↔  ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 100 | 99 | rexbidva | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  →  ( ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( ( 𝑎  ∘  𝐹 )  ∪  𝑑 ) )  =  0  ↔  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 101 | 28 100 | bitrd | ⊢ ( ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  ∧  𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) ) )  →  ( ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  ↔  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  0 ) ) | 
						
							| 102 | 101 | rabbidva | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  0 } ) | 
						
							| 103 |  | simplll | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 104 |  | ovex | ⊢ ( 1 ... 𝑀 )  ∈  V | 
						
							| 105 | 3 104 | unex | ⊢ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) )  ∈  V | 
						
							| 106 | 105 | a1i | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) )  ∈  V ) | 
						
							| 107 |  | simpr | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 108 | 55 | a1i | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  →  (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) ⟶ ( ℤ  ∖  ℕ ) ) | 
						
							| 109 |  | id | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  →  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) | 
						
							| 110 |  | incom | ⊢ ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑁 ) )  =  ( ( 1 ... 𝑁 )  ∩  ( ℤ  ∖  ℕ ) ) | 
						
							| 111 |  | fz1ssnn | ⊢ ( 1 ... 𝑁 )  ⊆  ℕ | 
						
							| 112 |  | ssdisj | ⊢ ( ( ( 1 ... 𝑁 )  ⊆  ℕ  ∧  ( ℕ  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ )  →  ( ( 1 ... 𝑁 )  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ ) | 
						
							| 113 | 111 39 112 | mp2an | ⊢ ( ( 1 ... 𝑁 )  ∩  ( ℤ  ∖  ℕ ) )  =  ∅ | 
						
							| 114 | 110 113 | eqtri | ⊢ ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑁 ) )  =  ∅ | 
						
							| 115 | 114 | a1i | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  →  ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑁 ) )  =  ∅ ) | 
						
							| 116 |  | fun | ⊢ ( ( ( (  I   ↾  ( ℤ  ∖  ℕ ) ) : ( ℤ  ∖  ℕ ) ⟶ ( ℤ  ∖  ℕ )  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  ( ( ℤ  ∖  ℕ )  ∩  ( 1 ... 𝑁 ) )  =  ∅ )  →  ( (  I   ↾  ( ℤ  ∖  ℕ ) )  ∪  𝐹 ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 117 | 108 109 115 116 | syl21anc | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  →  ( (  I   ↾  ( ℤ  ∖  ℕ ) )  ∪  𝐹 ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 118 |  | uncom | ⊢ ( (  I   ↾  ( ℤ  ∖  ℕ ) )  ∪  𝐹 )  =  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) | 
						
							| 119 | 118 | feq1i | ⊢ ( ( (  I   ↾  ( ℤ  ∖  ℕ ) )  ∪  𝐹 ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) )  ↔  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 120 | 117 119 | sylib | ⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 )  →  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 121 | 120 | ad3antlr | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) | 
						
							| 122 |  | mzprename | ⊢ ( ( ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) )  ∈  V  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) )  ∧  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) : ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) )  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 123 | 106 107 121 122 | syl3anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) )  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) ) | 
						
							| 124 | 3 16 17 | eldioph4i | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) )  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  0 }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 125 | 103 123 124 | syl2anc | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( ( 𝑒  ∈  ( ℤ  ↑m  ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑀 ) ) )  ↦  ( 𝑏 ‘ ( 𝑒  ∘  ( 𝐹  ∪  (  I   ↾  ( ℤ  ∖  ℕ ) ) ) ) ) ) ‘ ( 𝑎  ∪  𝑑 ) )  =  0 }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 126 | 102 125 | eqeltrd | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 127 |  | eleq2 | ⊢ ( 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  →  ( ( 𝑎  ∘  𝐹 )  ∈  𝑆  ↔  ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } ) ) | 
						
							| 128 | 127 | rabbidv | ⊢ ( 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  =  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } } ) | 
						
							| 129 | 128 | eleq1d | ⊢ ( 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  →  ( { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 )  ↔  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } }  ∈  ( Dioph ‘ 𝑀 ) ) ) | 
						
							| 130 | 126 129 | syl5ibrcom | ⊢ ( ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  ∧  𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) )  →  ( 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 ) ) ) | 
						
							| 131 | 130 | rexlimdva | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  ∧  𝑁  ∈  ℕ0 )  →  ( ∃ 𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 }  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 ) ) ) | 
						
							| 132 | 131 | expimpd | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  →  ( ( 𝑁  ∈  ℕ0  ∧  ∃ 𝑏  ∈  ( mzPoly ‘ ( ( ℤ  ∖  ℕ )  ∪  ( 1 ... 𝑁 ) ) ) 𝑆  =  { 𝑐  ∈  ( ℕ0  ↑m  ( 1 ... 𝑁 ) )  ∣  ∃ 𝑑  ∈  ( ℕ0  ↑m  ( ℤ  ∖  ℕ ) ) ( 𝑏 ‘ ( 𝑐  ∪  𝑑 ) )  =  0 } )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 ) ) ) | 
						
							| 133 | 18 132 | biimtrid | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  →  ( 𝑆  ∈  ( Dioph ‘ 𝑁 )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 ) ) ) | 
						
							| 134 | 133 | impcom | ⊢ ( ( 𝑆  ∈  ( Dioph ‘ 𝑁 )  ∧  ( 𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 ) ) | 
						
							| 135 | 134 | 3impb | ⊢ ( ( 𝑆  ∈  ( Dioph ‘ 𝑁 )  ∧  𝑀  ∈  ℕ0  ∧  𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) )  →  { 𝑎  ∈  ( ℕ0  ↑m  ( 1 ... 𝑀 ) )  ∣  ( 𝑎  ∘  𝐹 )  ∈  𝑆 }  ∈  ( Dioph ‘ 𝑀 ) ) |