Step |
Hyp |
Ref |
Expression |
1 |
|
zex |
⊢ ℤ ∈ V |
2 |
|
difexg |
⊢ ( ℤ ∈ V → ( ℤ ∖ ℕ ) ∈ V ) |
3 |
1 2
|
ax-mp |
⊢ ( ℤ ∖ ℕ ) ∈ V |
4 |
|
ominf |
⊢ ¬ ω ∈ Fin |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
7 |
6
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 0 + 1 ) ) = ( ℤ≥ ‘ 1 ) |
8 |
5 7
|
eqtr4i |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
9 |
8
|
difeq2i |
⊢ ( ℤ ∖ ℕ ) = ( ℤ ∖ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
10 |
|
0z |
⊢ 0 ∈ ℤ |
11 |
|
lzenom |
⊢ ( 0 ∈ ℤ → ( ℤ ∖ ( ℤ≥ ‘ ( 0 + 1 ) ) ) ≈ ω ) |
12 |
10 11
|
ax-mp |
⊢ ( ℤ ∖ ( ℤ≥ ‘ ( 0 + 1 ) ) ) ≈ ω |
13 |
9 12
|
eqbrtri |
⊢ ( ℤ ∖ ℕ ) ≈ ω |
14 |
|
enfi |
⊢ ( ( ℤ ∖ ℕ ) ≈ ω → ( ( ℤ ∖ ℕ ) ∈ Fin ↔ ω ∈ Fin ) ) |
15 |
13 14
|
ax-mp |
⊢ ( ( ℤ ∖ ℕ ) ∈ Fin ↔ ω ∈ Fin ) |
16 |
4 15
|
mtbir |
⊢ ¬ ( ℤ ∖ ℕ ) ∈ Fin |
17 |
|
disjdifr |
⊢ ( ( ℤ ∖ ℕ ) ∩ ℕ ) = ∅ |
18 |
3 16 17
|
eldioph4b |
⊢ ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } ) ) |
19 |
|
simpr |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) |
20 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) |
21 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
22 |
21
|
mapco2 |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) → ( 𝑎 ∘ 𝐹 ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
23 |
19 20 22
|
syl2anc |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → ( 𝑎 ∘ 𝐹 ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
24 |
|
uneq1 |
⊢ ( 𝑐 = ( 𝑎 ∘ 𝐹 ) → ( 𝑐 ∪ 𝑑 ) = ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) |
25 |
24
|
fveqeq2d |
⊢ ( 𝑐 = ( 𝑎 ∘ 𝐹 ) → ( ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 ↔ ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = 0 ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑐 = ( 𝑎 ∘ 𝐹 ) → ( ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 ↔ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = 0 ) ) |
27 |
26
|
elrab3 |
⊢ ( ( 𝑎 ∘ 𝐹 ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) → ( ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } ↔ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = 0 ) ) |
28 |
23 27
|
syl |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → ( ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } ↔ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = 0 ) ) |
29 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) |
30 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) |
31 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) |
32 |
|
coundi |
⊢ ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) = ( ( ( 𝑎 ∪ 𝑑 ) ∘ 𝐹 ) ∪ ( ( 𝑎 ∪ 𝑑 ) ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) |
33 |
|
coundir |
⊢ ( ( 𝑎 ∪ 𝑑 ) ∘ 𝐹 ) = ( ( 𝑎 ∘ 𝐹 ) ∪ ( 𝑑 ∘ 𝐹 ) ) |
34 |
|
elmapi |
⊢ ( 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) → 𝑑 : ( ℤ ∖ ℕ ) ⟶ ℕ0 ) |
35 |
34
|
3ad2ant3 |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → 𝑑 : ( ℤ ∖ ℕ ) ⟶ ℕ0 ) |
36 |
|
simp1 |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) |
37 |
|
incom |
⊢ ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑀 ) ) = ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) |
38 |
|
fz1ssnn |
⊢ ( 1 ... 𝑀 ) ⊆ ℕ |
39 |
|
disjdif |
⊢ ( ℕ ∩ ( ℤ ∖ ℕ ) ) = ∅ |
40 |
|
ssdisj |
⊢ ( ( ( 1 ... 𝑀 ) ⊆ ℕ ∧ ( ℕ ∩ ( ℤ ∖ ℕ ) ) = ∅ ) → ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) = ∅ ) |
41 |
38 39 40
|
mp2an |
⊢ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) = ∅ |
42 |
37 41
|
eqtri |
⊢ ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑀 ) ) = ∅ |
43 |
42
|
a1i |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑀 ) ) = ∅ ) |
44 |
|
coeq0i |
⊢ ( ( 𝑑 : ( ℤ ∖ ℕ ) ⟶ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑀 ) ) = ∅ ) → ( 𝑑 ∘ 𝐹 ) = ∅ ) |
45 |
35 36 43 44
|
syl3anc |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑑 ∘ 𝐹 ) = ∅ ) |
46 |
45
|
uneq2d |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∘ 𝐹 ) ∪ ( 𝑑 ∘ 𝐹 ) ) = ( ( 𝑎 ∘ 𝐹 ) ∪ ∅ ) ) |
47 |
33 46
|
eqtrid |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∪ 𝑑 ) ∘ 𝐹 ) = ( ( 𝑎 ∘ 𝐹 ) ∪ ∅ ) ) |
48 |
|
un0 |
⊢ ( ( 𝑎 ∘ 𝐹 ) ∪ ∅ ) = ( 𝑎 ∘ 𝐹 ) |
49 |
47 48
|
eqtrdi |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∪ 𝑑 ) ∘ 𝐹 ) = ( 𝑎 ∘ 𝐹 ) ) |
50 |
|
coundir |
⊢ ( ( 𝑎 ∪ 𝑑 ) ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = ( ( 𝑎 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) ∪ ( 𝑑 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) |
51 |
|
elmapi |
⊢ ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) → 𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0 ) |
52 |
51
|
3ad2ant2 |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → 𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0 ) |
53 |
|
f1oi |
⊢ ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) –1-1-onto→ ( ℤ ∖ ℕ ) |
54 |
|
f1of |
⊢ ( ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) –1-1-onto→ ( ℤ ∖ ℕ ) → ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) ⟶ ( ℤ ∖ ℕ ) ) |
55 |
53 54
|
ax-mp |
⊢ ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) ⟶ ( ℤ ∖ ℕ ) |
56 |
|
coeq0i |
⊢ ( ( 𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0 ∧ ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) ⟶ ( ℤ ∖ ℕ ) ∧ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) = ∅ ) → ( 𝑎 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = ∅ ) |
57 |
55 41 56
|
mp3an23 |
⊢ ( 𝑎 : ( 1 ... 𝑀 ) ⟶ ℕ0 → ( 𝑎 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = ∅ ) |
58 |
52 57
|
syl |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑎 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = ∅ ) |
59 |
|
coires1 |
⊢ ( 𝑑 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = ( 𝑑 ↾ ( ℤ ∖ ℕ ) ) |
60 |
|
ffn |
⊢ ( 𝑑 : ( ℤ ∖ ℕ ) ⟶ ℕ0 → 𝑑 Fn ( ℤ ∖ ℕ ) ) |
61 |
|
fnresdm |
⊢ ( 𝑑 Fn ( ℤ ∖ ℕ ) → ( 𝑑 ↾ ( ℤ ∖ ℕ ) ) = 𝑑 ) |
62 |
34 60 61
|
3syl |
⊢ ( 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) → ( 𝑑 ↾ ( ℤ ∖ ℕ ) ) = 𝑑 ) |
63 |
59 62
|
eqtrid |
⊢ ( 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) → ( 𝑑 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = 𝑑 ) |
64 |
63
|
3ad2ant3 |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑑 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = 𝑑 ) |
65 |
58 64
|
uneq12d |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) ∪ ( 𝑑 ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) = ( ∅ ∪ 𝑑 ) ) |
66 |
50 65
|
eqtrid |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∪ 𝑑 ) ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = ( ∅ ∪ 𝑑 ) ) |
67 |
|
uncom |
⊢ ( ∅ ∪ 𝑑 ) = ( 𝑑 ∪ ∅ ) |
68 |
|
un0 |
⊢ ( 𝑑 ∪ ∅ ) = 𝑑 |
69 |
67 68
|
eqtri |
⊢ ( ∅ ∪ 𝑑 ) = 𝑑 |
70 |
66 69
|
eqtrdi |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∪ 𝑑 ) ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) = 𝑑 ) |
71 |
49 70
|
uneq12d |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( ( 𝑎 ∪ 𝑑 ) ∘ 𝐹 ) ∪ ( ( 𝑎 ∪ 𝑑 ) ∘ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) = ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) |
72 |
32 71
|
eqtr2id |
⊢ ( ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) = ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) |
73 |
29 30 31 72
|
syl3anc |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) = ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) |
74 |
73
|
fveq2d |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = ( 𝑏 ‘ ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) |
75 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
76 |
|
mapss |
⊢ ( ( ℤ ∈ V ∧ ℕ0 ⊆ ℤ ) → ( ℕ0 ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ⊆ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
77 |
1 75 76
|
mp2an |
⊢ ( ℕ0 ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ⊆ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
78 |
41
|
reseq2i |
⊢ ( 𝑎 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ( 𝑎 ↾ ∅ ) |
79 |
|
res0 |
⊢ ( 𝑎 ↾ ∅ ) = ∅ |
80 |
78 79
|
eqtri |
⊢ ( 𝑎 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ∅ |
81 |
41
|
reseq2i |
⊢ ( 𝑑 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ( 𝑑 ↾ ∅ ) |
82 |
|
res0 |
⊢ ( 𝑑 ↾ ∅ ) = ∅ |
83 |
81 82
|
eqtri |
⊢ ( 𝑑 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ∅ |
84 |
80 83
|
eqtr4i |
⊢ ( 𝑎 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ( 𝑑 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) |
85 |
|
elmapresaun |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ∧ ( 𝑎 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ( 𝑑 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) ) → ( 𝑎 ∪ 𝑑 ) ∈ ( ℕ0 ↑m ( ( 1 ... 𝑀 ) ∪ ( ℤ ∖ ℕ ) ) ) ) |
86 |
|
uncom |
⊢ ( ( 1 ... 𝑀 ) ∪ ( ℤ ∖ ℕ ) ) = ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) |
87 |
86
|
oveq2i |
⊢ ( ℕ0 ↑m ( ( 1 ... 𝑀 ) ∪ ( ℤ ∖ ℕ ) ) ) = ( ℕ0 ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
88 |
85 87
|
eleqtrdi |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ∧ ( 𝑎 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) = ( 𝑑 ↾ ( ( 1 ... 𝑀 ) ∩ ( ℤ ∖ ℕ ) ) ) ) → ( 𝑎 ∪ 𝑑 ) ∈ ( ℕ0 ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
89 |
84 88
|
mp3an3 |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑎 ∪ 𝑑 ) ∈ ( ℕ0 ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
90 |
77 89
|
sselid |
⊢ ( ( 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑎 ∪ 𝑑 ) ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
91 |
90
|
adantll |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑎 ∪ 𝑑 ) ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
92 |
|
coeq1 |
⊢ ( 𝑒 = ( 𝑎 ∪ 𝑑 ) → ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) = ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) |
93 |
92
|
fveq2d |
⊢ ( 𝑒 = ( 𝑎 ∪ 𝑑 ) → ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) = ( 𝑏 ‘ ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) |
94 |
|
eqid |
⊢ ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) = ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) |
95 |
|
fvex |
⊢ ( 𝑏 ‘ ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ∈ V |
96 |
93 94 95
|
fvmpt |
⊢ ( ( 𝑎 ∪ 𝑑 ) ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) → ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = ( 𝑏 ‘ ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) |
97 |
91 96
|
syl |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = ( 𝑏 ‘ ( ( 𝑎 ∪ 𝑑 ) ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) |
98 |
74 97
|
eqtr4d |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) ) |
99 |
98
|
eqeq1d |
⊢ ( ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) ∧ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ) → ( ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = 0 ↔ ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = 0 ) ) |
100 |
99
|
rexbidva |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → ( ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( ( 𝑎 ∘ 𝐹 ) ∪ 𝑑 ) ) = 0 ↔ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = 0 ) ) |
101 |
28 100
|
bitrd |
⊢ ( ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) ∧ 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ) → ( ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } ↔ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = 0 ) ) |
102 |
101
|
rabbidva |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = 0 } ) |
103 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → 𝑀 ∈ ℕ0 ) |
104 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
105 |
3 104
|
unex |
⊢ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ∈ V |
106 |
105
|
a1i |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ∈ V ) |
107 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) |
108 |
55
|
a1i |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) → ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) ⟶ ( ℤ ∖ ℕ ) ) |
109 |
|
id |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) → 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) |
110 |
|
incom |
⊢ ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑁 ) ) = ( ( 1 ... 𝑁 ) ∩ ( ℤ ∖ ℕ ) ) |
111 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
112 |
|
ssdisj |
⊢ ( ( ( 1 ... 𝑁 ) ⊆ ℕ ∧ ( ℕ ∩ ( ℤ ∖ ℕ ) ) = ∅ ) → ( ( 1 ... 𝑁 ) ∩ ( ℤ ∖ ℕ ) ) = ∅ ) |
113 |
111 39 112
|
mp2an |
⊢ ( ( 1 ... 𝑁 ) ∩ ( ℤ ∖ ℕ ) ) = ∅ |
114 |
110 113
|
eqtri |
⊢ ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑁 ) ) = ∅ |
115 |
114
|
a1i |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) → ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑁 ) ) = ∅ ) |
116 |
|
fun |
⊢ ( ( ( ( I ↾ ( ℤ ∖ ℕ ) ) : ( ℤ ∖ ℕ ) ⟶ ( ℤ ∖ ℕ ) ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ ( ( ℤ ∖ ℕ ) ∩ ( 1 ... 𝑁 ) ) = ∅ ) → ( ( I ↾ ( ℤ ∖ ℕ ) ) ∪ 𝐹 ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
117 |
108 109 115 116
|
syl21anc |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) → ( ( I ↾ ( ℤ ∖ ℕ ) ) ∪ 𝐹 ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
118 |
|
uncom |
⊢ ( ( I ↾ ( ℤ ∖ ℕ ) ) ∪ 𝐹 ) = ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) |
119 |
118
|
feq1i |
⊢ ( ( ( I ↾ ( ℤ ∖ ℕ ) ) ∪ 𝐹 ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ↔ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
120 |
117 119
|
sylib |
⊢ ( 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) → ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
121 |
120
|
ad3antlr |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) |
122 |
|
mzprename |
⊢ ( ( ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ∈ V ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) : ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ⟶ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) → ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
123 |
106 107 121 122
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) |
124 |
3 16 17
|
eldioph4i |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = 0 } ∈ ( Dioph ‘ 𝑀 ) ) |
125 |
103 123 124
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( ( 𝑒 ∈ ( ℤ ↑m ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑀 ) ) ) ↦ ( 𝑏 ‘ ( 𝑒 ∘ ( 𝐹 ∪ ( I ↾ ( ℤ ∖ ℕ ) ) ) ) ) ) ‘ ( 𝑎 ∪ 𝑑 ) ) = 0 } ∈ ( Dioph ‘ 𝑀 ) ) |
126 |
102 125
|
eqeltrd |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } } ∈ ( Dioph ‘ 𝑀 ) ) |
127 |
|
eleq2 |
⊢ ( 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } → ( ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 ↔ ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } ) ) |
128 |
127
|
rabbidv |
⊢ ( 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } = { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } } ) |
129 |
128
|
eleq1d |
⊢ ( 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } → ( { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ↔ { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } } ∈ ( Dioph ‘ 𝑀 ) ) ) |
130 |
126 129
|
syl5ibrcom |
⊢ ( ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) ) → ( 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ) ) |
131 |
130
|
rexlimdva |
⊢ ( ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ∧ 𝑁 ∈ ℕ0 ) → ( ∃ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ) ) |
132 |
131
|
expimpd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑏 ∈ ( mzPoly ‘ ( ( ℤ ∖ ℕ ) ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑐 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑑 ∈ ( ℕ0 ↑m ( ℤ ∖ ℕ ) ) ( 𝑏 ‘ ( 𝑐 ∪ 𝑑 ) ) = 0 } ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ) ) |
133 |
18 132
|
syl5bi |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) → ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ) ) |
134 |
133
|
impcom |
⊢ ( ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ) |
135 |
134
|
3impb |
⊢ ( ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ∧ 𝑀 ∈ ℕ0 ∧ 𝐹 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑀 ) ) → { 𝑎 ∈ ( ℕ0 ↑m ( 1 ... 𝑀 ) ) ∣ ( 𝑎 ∘ 𝐹 ) ∈ 𝑆 } ∈ ( Dioph ‘ 𝑀 ) ) |