| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldioph4b.a |
⊢ 𝑊 ∈ V |
| 2 |
|
eldioph4b.b |
⊢ ¬ 𝑊 ∈ Fin |
| 3 |
|
eldioph4b.c |
⊢ ( 𝑊 ∩ ℕ ) = ∅ |
| 4 |
|
eldiophelnn0 |
⊢ ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) → 𝑁 ∈ ℕ0 ) |
| 5 |
|
ovex |
⊢ ( 1 ... 𝑁 ) ∈ V |
| 6 |
1 5
|
unex |
⊢ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ V |
| 7 |
6
|
jctr |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℕ0 ∧ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ V ) ) |
| 8 |
2
|
intnanr |
⊢ ¬ ( 𝑊 ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) |
| 9 |
|
unfir |
⊢ ( ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ Fin → ( 𝑊 ∈ Fin ∧ ( 1 ... 𝑁 ) ∈ Fin ) ) |
| 10 |
8 9
|
mto |
⊢ ¬ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ Fin |
| 11 |
|
ssun2 |
⊢ ( 1 ... 𝑁 ) ⊆ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) |
| 12 |
10 11
|
pm3.2i |
⊢ ( ¬ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) |
| 13 |
|
eldioph2b |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ V ) ∧ ( ¬ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ∈ Fin ∧ ( 1 ... 𝑁 ) ⊆ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) → ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 14 |
7 12 13
|
sylancl |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ) ) |
| 15 |
|
elmapssres |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 1 ... 𝑁 ) ⊆ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 16 |
11 15
|
mpan2 |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) |
| 18 |
|
ssun1 |
⊢ 𝑊 ⊆ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) |
| 19 |
|
elmapssres |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ 𝑊 ⊆ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( 𝑢 ↾ 𝑊 ) ∈ ( ℕ0 ↑m 𝑊 ) ) |
| 20 |
18 19
|
mpan2 |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( 𝑢 ↾ 𝑊 ) ∈ ( ℕ0 ↑m 𝑊 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑢 ↾ 𝑊 ) ∈ ( ℕ0 ↑m 𝑊 ) ) |
| 22 |
|
uncom |
⊢ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) = ( ( 𝑢 ↾ 𝑊 ) ∪ ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
| 23 |
|
resundi |
⊢ ( 𝑢 ↾ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) = ( ( 𝑢 ↾ 𝑊 ) ∪ ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) |
| 24 |
22 23
|
eqtr4i |
⊢ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) = ( 𝑢 ↾ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) |
| 25 |
|
elmapi |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → 𝑢 : ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ⟶ ℕ0 ) |
| 26 |
|
ffn |
⊢ ( 𝑢 : ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ⟶ ℕ0 → 𝑢 Fn ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) |
| 27 |
|
fnresdm |
⊢ ( 𝑢 Fn ( 𝑊 ∪ ( 1 ... 𝑁 ) ) → ( 𝑢 ↾ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) = 𝑢 ) |
| 28 |
25 26 27
|
3syl |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( 𝑢 ↾ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) = 𝑢 ) |
| 29 |
24 28
|
eqtrid |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) = 𝑢 ) |
| 30 |
29
|
fveqeq2d |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) ) = 0 ↔ ( 𝑝 ‘ 𝑢 ) = 0 ) ) |
| 31 |
30
|
biimpar |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) ) = 0 ) |
| 32 |
|
uneq2 |
⊢ ( 𝑤 = ( 𝑢 ↾ 𝑊 ) → ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) = ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) ) |
| 33 |
32
|
fveqeq2d |
⊢ ( 𝑤 = ( 𝑢 ↾ 𝑊 ) → ( ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ↔ ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) ) = 0 ) ) |
| 34 |
33
|
rspcev |
⊢ ( ( ( 𝑢 ↾ 𝑊 ) ∈ ( ℕ0 ↑m 𝑊 ) ∧ ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ ( 𝑢 ↾ 𝑊 ) ) ) = 0 ) → ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ) |
| 35 |
21 31 34
|
syl2anc |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ) |
| 36 |
17 35
|
jca |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ) ) |
| 37 |
|
eleq1 |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) ) |
| 38 |
|
uneq1 |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( 𝑡 ∪ 𝑤 ) = ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) |
| 39 |
38
|
fveqeq2d |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ↔ ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ) ) |
| 40 |
39
|
rexbidv |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ↔ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ) ) |
| 41 |
37 40
|
anbi12d |
⊢ ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ↔ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∪ 𝑤 ) ) = 0 ) ) ) |
| 42 |
36 41
|
syl5ibrcom |
⊢ ( ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) ) |
| 43 |
42
|
expimpd |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝑝 ‘ 𝑢 ) = 0 ∧ 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) ) |
| 44 |
43
|
ancomsd |
⊢ ( 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) ) |
| 45 |
44
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) → ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) |
| 46 |
|
uncom |
⊢ ( 𝑡 ∪ 𝑤 ) = ( 𝑤 ∪ 𝑡 ) |
| 47 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 48 |
|
sslin |
⊢ ( ( 1 ... 𝑁 ) ⊆ ℕ → ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ⊆ ( 𝑊 ∩ ℕ ) ) |
| 49 |
47 48
|
ax-mp |
⊢ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ⊆ ( 𝑊 ∩ ℕ ) |
| 50 |
49 3
|
sseqtri |
⊢ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ⊆ ∅ |
| 51 |
|
ss0 |
⊢ ( ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ⊆ ∅ → ( 𝑊 ∩ ( 1 ... 𝑁 ) ) = ∅ ) |
| 52 |
50 51
|
ax-mp |
⊢ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) = ∅ |
| 53 |
52
|
reseq2i |
⊢ ( 𝑤 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ( 𝑤 ↾ ∅ ) |
| 54 |
|
res0 |
⊢ ( 𝑤 ↾ ∅ ) = ∅ |
| 55 |
53 54
|
eqtri |
⊢ ( 𝑤 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ∅ |
| 56 |
52
|
reseq2i |
⊢ ( 𝑡 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ( 𝑡 ↾ ∅ ) |
| 57 |
|
res0 |
⊢ ( 𝑡 ↾ ∅ ) = ∅ |
| 58 |
56 57
|
eqtri |
⊢ ( 𝑡 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ∅ |
| 59 |
55 58
|
eqtr4i |
⊢ ( 𝑤 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ( 𝑡 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) |
| 60 |
|
elmapresaun |
⊢ ( ( 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( 𝑤 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ( 𝑡 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) ) → ( 𝑤 ∪ 𝑡 ) ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) |
| 61 |
59 60
|
mp3an3 |
⊢ ( ( 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( 𝑤 ∪ 𝑡 ) ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) |
| 62 |
61
|
ancoms |
⊢ ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) → ( 𝑤 ∪ 𝑡 ) ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) |
| 63 |
46 62
|
eqeltrid |
⊢ ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) → ( 𝑡 ∪ 𝑤 ) ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) |
| 64 |
63
|
adantr |
⊢ ( ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) ∧ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) → ( 𝑡 ∪ 𝑤 ) ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ) |
| 65 |
46
|
reseq1i |
⊢ ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑤 ∪ 𝑡 ) ↾ ( 1 ... 𝑁 ) ) |
| 66 |
|
elmapresaunres2 |
⊢ ( ( 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ( 𝑤 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) = ( 𝑡 ↾ ( 𝑊 ∩ ( 1 ... 𝑁 ) ) ) ) → ( ( 𝑤 ∪ 𝑡 ) ↾ ( 1 ... 𝑁 ) ) = 𝑡 ) |
| 67 |
59 66
|
mp3an3 |
⊢ ( ( 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ∧ 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ) → ( ( 𝑤 ∪ 𝑡 ) ↾ ( 1 ... 𝑁 ) ) = 𝑡 ) |
| 68 |
67
|
ancoms |
⊢ ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) → ( ( 𝑤 ∪ 𝑡 ) ↾ ( 1 ... 𝑁 ) ) = 𝑡 ) |
| 69 |
65 68
|
eqtr2id |
⊢ ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) → 𝑡 = ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) ∧ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) → 𝑡 = ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) ) |
| 71 |
|
simpr |
⊢ ( ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) ∧ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) → ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) |
| 72 |
|
reseq1 |
⊢ ( 𝑢 = ( 𝑡 ∪ 𝑤 ) → ( 𝑢 ↾ ( 1 ... 𝑁 ) ) = ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) ) |
| 73 |
72
|
eqeq2d |
⊢ ( 𝑢 = ( 𝑡 ∪ 𝑤 ) → ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ↔ 𝑡 = ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) ) ) |
| 74 |
|
fveqeq2 |
⊢ ( 𝑢 = ( 𝑡 ∪ 𝑤 ) → ( ( 𝑝 ‘ 𝑢 ) = 0 ↔ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) |
| 75 |
73 74
|
anbi12d |
⊢ ( 𝑢 = ( 𝑡 ∪ 𝑤 ) → ( ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ( 𝑡 = ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) ) |
| 76 |
75
|
rspcev |
⊢ ( ( ( 𝑡 ∪ 𝑤 ) ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ∧ ( 𝑡 = ( ( 𝑡 ∪ 𝑤 ) ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) → ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ) |
| 77 |
64 70 71 76
|
syl12anc |
⊢ ( ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ) ∧ ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) → ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ) |
| 78 |
77
|
r19.29an |
⊢ ( ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) → ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ) |
| 79 |
45 78
|
impbii |
⊢ ( ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) ↔ ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) ) |
| 80 |
79
|
abbii |
⊢ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∣ ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) } |
| 81 |
|
df-rab |
⊢ { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } = { 𝑡 ∣ ( 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∧ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 ) } |
| 82 |
80 81
|
eqtr4i |
⊢ { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } |
| 83 |
82
|
eqeq2i |
⊢ ( 𝑆 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ↔ 𝑆 = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } ) |
| 84 |
83
|
rexbii |
⊢ ( ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑡 ∣ ∃ 𝑢 ∈ ( ℕ0 ↑m ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) ( 𝑡 = ( 𝑢 ↾ ( 1 ... 𝑁 ) ) ∧ ( 𝑝 ‘ 𝑢 ) = 0 ) } ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } ) |
| 85 |
14 84
|
bitrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ↔ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } ) ) |
| 86 |
4 85
|
biadanii |
⊢ ( 𝑆 ∈ ( Dioph ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℕ0 ∧ ∃ 𝑝 ∈ ( mzPoly ‘ ( 𝑊 ∪ ( 1 ... 𝑁 ) ) ) 𝑆 = { 𝑡 ∈ ( ℕ0 ↑m ( 1 ... 𝑁 ) ) ∣ ∃ 𝑤 ∈ ( ℕ0 ↑m 𝑊 ) ( 𝑝 ‘ ( 𝑡 ∪ 𝑤 ) ) = 0 } ) ) |