Step |
Hyp |
Ref |
Expression |
1 |
|
eldioph4b.a |
|
2 |
|
eldioph4b.b |
|
3 |
|
eldioph4b.c |
|
4 |
|
eldiophelnn0 |
|
5 |
|
ovex |
|
6 |
1 5
|
unex |
|
7 |
6
|
jctr |
|
8 |
2
|
intnanr |
|
9 |
|
unfir |
|
10 |
8 9
|
mto |
|
11 |
|
ssun2 |
|
12 |
10 11
|
pm3.2i |
|
13 |
|
eldioph2b |
|
14 |
7 12 13
|
sylancl |
|
15 |
|
elmapssres |
|
16 |
11 15
|
mpan2 |
|
17 |
16
|
adantr |
|
18 |
|
ssun1 |
|
19 |
|
elmapssres |
|
20 |
18 19
|
mpan2 |
|
21 |
20
|
adantr |
|
22 |
|
uncom |
|
23 |
|
resundi |
|
24 |
22 23
|
eqtr4i |
|
25 |
|
elmapi |
|
26 |
|
ffn |
|
27 |
|
fnresdm |
|
28 |
25 26 27
|
3syl |
|
29 |
24 28
|
syl5eq |
|
30 |
29
|
fveqeq2d |
|
31 |
30
|
biimpar |
|
32 |
|
uneq2 |
|
33 |
32
|
fveqeq2d |
|
34 |
33
|
rspcev |
|
35 |
21 31 34
|
syl2anc |
|
36 |
17 35
|
jca |
|
37 |
|
eleq1 |
|
38 |
|
uneq1 |
|
39 |
38
|
fveqeq2d |
|
40 |
39
|
rexbidv |
|
41 |
37 40
|
anbi12d |
|
42 |
36 41
|
syl5ibrcom |
|
43 |
42
|
expimpd |
|
44 |
43
|
ancomsd |
|
45 |
44
|
rexlimiv |
|
46 |
|
uncom |
|
47 |
|
fz1ssnn |
|
48 |
|
sslin |
|
49 |
47 48
|
ax-mp |
|
50 |
49 3
|
sseqtri |
|
51 |
|
ss0 |
|
52 |
50 51
|
ax-mp |
|
53 |
52
|
reseq2i |
|
54 |
|
res0 |
|
55 |
53 54
|
eqtri |
|
56 |
52
|
reseq2i |
|
57 |
|
res0 |
|
58 |
56 57
|
eqtri |
|
59 |
55 58
|
eqtr4i |
|
60 |
|
elmapresaun |
|
61 |
59 60
|
mp3an3 |
|
62 |
61
|
ancoms |
|
63 |
46 62
|
eqeltrid |
|
64 |
63
|
adantr |
|
65 |
46
|
reseq1i |
|
66 |
|
elmapresaunres2 |
|
67 |
59 66
|
mp3an3 |
|
68 |
67
|
ancoms |
|
69 |
65 68
|
eqtr2id |
|
70 |
69
|
adantr |
|
71 |
|
simpr |
|
72 |
|
reseq1 |
|
73 |
72
|
eqeq2d |
|
74 |
|
fveqeq2 |
|
75 |
73 74
|
anbi12d |
|
76 |
75
|
rspcev |
|
77 |
64 70 71 76
|
syl12anc |
|
78 |
77
|
r19.29an |
|
79 |
45 78
|
impbii |
|
80 |
79
|
abbii |
|
81 |
|
df-rab |
|
82 |
80 81
|
eqtr4i |
|
83 |
82
|
eqeq2i |
|
84 |
83
|
rexbii |
|
85 |
14 84
|
bitrdi |
|
86 |
4 85
|
biadanii |
|