| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zex |
|
| 2 |
|
difexg |
|
| 3 |
1 2
|
mp1i |
|
| 4 |
|
nnex |
|
| 5 |
4
|
a1i |
|
| 6 |
|
ovex |
|
| 7 |
6
|
2a1i |
|
| 8 |
|
ovex |
|
| 9 |
8
|
2a1i |
|
| 10 |
|
simpl |
|
| 11 |
10
|
peano2zd |
|
| 12 |
|
simprl |
|
| 13 |
11 12
|
zsubcld |
|
| 14 |
|
zre |
|
| 15 |
14
|
ad2antrl |
|
| 16 |
11
|
zred |
|
| 17 |
|
1red |
|
| 18 |
|
simprr |
|
| 19 |
|
zcn |
|
| 20 |
19
|
adantr |
|
| 21 |
|
ax-1cn |
|
| 22 |
|
pncan |
|
| 23 |
20 21 22
|
sylancl |
|
| 24 |
18 23
|
breqtrrd |
|
| 25 |
15 16 17 24
|
lesubd |
|
| 26 |
11
|
zcnd |
|
| 27 |
|
zcn |
|
| 28 |
27
|
ad2antrl |
|
| 29 |
26 28
|
nncand |
|
| 30 |
29
|
eqcomd |
|
| 31 |
13 25 30
|
jca31 |
|
| 32 |
31
|
adantrr |
|
| 33 |
|
eleq1 |
|
| 34 |
|
breq2 |
|
| 35 |
33 34
|
anbi12d |
|
| 36 |
|
oveq2 |
|
| 37 |
36
|
eqeq2d |
|
| 38 |
35 37
|
anbi12d |
|
| 39 |
38
|
ad2antll |
|
| 40 |
32 39
|
mpbird |
|
| 41 |
|
simpl |
|
| 42 |
41
|
peano2zd |
|
| 43 |
|
simprl |
|
| 44 |
42 43
|
zsubcld |
|
| 45 |
42
|
zred |
|
| 46 |
|
zre |
|
| 47 |
46
|
adantr |
|
| 48 |
|
zre |
|
| 49 |
48
|
ad2antrl |
|
| 50 |
47
|
recnd |
|
| 51 |
|
pncan2 |
|
| 52 |
50 21 51
|
sylancl |
|
| 53 |
|
simprr |
|
| 54 |
52 53
|
eqbrtrd |
|
| 55 |
45 47 49 54
|
subled |
|
| 56 |
42
|
zcnd |
|
| 57 |
|
zcn |
|
| 58 |
57
|
ad2antrl |
|
| 59 |
56 58
|
nncand |
|
| 60 |
59
|
eqcomd |
|
| 61 |
44 55 60
|
jca31 |
|
| 62 |
61
|
adantrr |
|
| 63 |
|
eleq1 |
|
| 64 |
|
breq1 |
|
| 65 |
63 64
|
anbi12d |
|
| 66 |
|
oveq2 |
|
| 67 |
66
|
eqeq2d |
|
| 68 |
65 67
|
anbi12d |
|
| 69 |
68
|
ad2antll |
|
| 70 |
62 69
|
mpbird |
|
| 71 |
40 70
|
impbida |
|
| 72 |
|
ellz1 |
|
| 73 |
72
|
anbi1d |
|
| 74 |
|
elnnz1 |
|
| 75 |
74
|
a1i |
|
| 76 |
75
|
anbi1d |
|
| 77 |
71 73 76
|
3bitr4d |
|
| 78 |
3 5 7 9 77
|
en2d |
|
| 79 |
|
nnenom |
|
| 80 |
|
entr |
|
| 81 |
78 79 80
|
sylancl |
|