Step |
Hyp |
Ref |
Expression |
1 |
|
zex |
|
2 |
|
difexg |
|
3 |
1 2
|
mp1i |
|
4 |
|
nnex |
|
5 |
4
|
a1i |
|
6 |
|
ovex |
|
7 |
6
|
2a1i |
|
8 |
|
ovex |
|
9 |
8
|
2a1i |
|
10 |
|
simpl |
|
11 |
10
|
peano2zd |
|
12 |
|
simprl |
|
13 |
11 12
|
zsubcld |
|
14 |
|
zre |
|
15 |
14
|
ad2antrl |
|
16 |
11
|
zred |
|
17 |
|
1red |
|
18 |
|
simprr |
|
19 |
|
zcn |
|
20 |
19
|
adantr |
|
21 |
|
ax-1cn |
|
22 |
|
pncan |
|
23 |
20 21 22
|
sylancl |
|
24 |
18 23
|
breqtrrd |
|
25 |
15 16 17 24
|
lesubd |
|
26 |
11
|
zcnd |
|
27 |
|
zcn |
|
28 |
27
|
ad2antrl |
|
29 |
26 28
|
nncand |
|
30 |
29
|
eqcomd |
|
31 |
13 25 30
|
jca31 |
|
32 |
31
|
adantrr |
|
33 |
|
eleq1 |
|
34 |
|
breq2 |
|
35 |
33 34
|
anbi12d |
|
36 |
|
oveq2 |
|
37 |
36
|
eqeq2d |
|
38 |
35 37
|
anbi12d |
|
39 |
38
|
ad2antll |
|
40 |
32 39
|
mpbird |
|
41 |
|
simpl |
|
42 |
41
|
peano2zd |
|
43 |
|
simprl |
|
44 |
42 43
|
zsubcld |
|
45 |
42
|
zred |
|
46 |
|
zre |
|
47 |
46
|
adantr |
|
48 |
|
zre |
|
49 |
48
|
ad2antrl |
|
50 |
47
|
recnd |
|
51 |
|
pncan2 |
|
52 |
50 21 51
|
sylancl |
|
53 |
|
simprr |
|
54 |
52 53
|
eqbrtrd |
|
55 |
45 47 49 54
|
subled |
|
56 |
42
|
zcnd |
|
57 |
|
zcn |
|
58 |
57
|
ad2antrl |
|
59 |
56 58
|
nncand |
|
60 |
59
|
eqcomd |
|
61 |
44 55 60
|
jca31 |
|
62 |
61
|
adantrr |
|
63 |
|
eleq1 |
|
64 |
|
breq1 |
|
65 |
63 64
|
anbi12d |
|
66 |
|
oveq2 |
|
67 |
66
|
eqeq2d |
|
68 |
65 67
|
anbi12d |
|
69 |
68
|
ad2antll |
|
70 |
62 69
|
mpbird |
|
71 |
40 70
|
impbida |
|
72 |
|
ellz1 |
|
73 |
72
|
anbi1d |
|
74 |
|
elnnz1 |
|
75 |
74
|
a1i |
|
76 |
75
|
anbi1d |
|
77 |
71 73 76
|
3bitr4d |
|
78 |
3 5 7 9 77
|
en2d |
|
79 |
|
nnenom |
|
80 |
|
entr |
|
81 |
78 79 80
|
sylancl |
|