Metamath Proof Explorer


Theorem ralrnmpo

Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses rngop.1 F=xA,yBC
ralrnmpo.2 z=Cφψ
Assertion ralrnmpo xAyBCVzranFφxAyBψ

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 ralrnmpo.2 z=Cφψ
3 1 rnmpo ranF=w|xAyBw=C
4 3 raleqi zranFφzw|xAyBw=Cφ
5 eqeq1 w=zw=Cz=C
6 5 2rexbidv w=zxAyBw=CxAyBz=C
7 6 ralab zw|xAyBw=CφzxAyBz=Cφ
8 ralcom4 xAzyBz=CφzxAyBz=Cφ
9 r19.23v xAyBz=CφxAyBz=Cφ
10 9 albii zxAyBz=CφzxAyBz=Cφ
11 8 10 bitr2i zxAyBz=CφxAzyBz=Cφ
12 4 7 11 3bitri zranFφxAzyBz=Cφ
13 ralcom4 yBzz=CφzyBz=Cφ
14 r19.23v yBz=CφyBz=Cφ
15 14 albii zyBz=CφzyBz=Cφ
16 13 15 bitri yBzz=CφzyBz=Cφ
17 nfv zψ
18 17 2 ceqsalg CVzz=Cφψ
19 18 ralimi yBCVyBzz=Cφψ
20 ralbi yBzz=CφψyBzz=CφyBψ
21 19 20 syl yBCVyBzz=CφyBψ
22 16 21 bitr3id yBCVzyBz=CφyBψ
23 22 ralimi xAyBCVxAzyBz=CφyBψ
24 ralbi xAzyBz=CφyBψxAzyBz=CφxAyBψ
25 23 24 syl xAyBCVxAzyBz=CφxAyBψ
26 12 25 bitrid xAyBCVzranFφxAyBψ