Metamath Proof Explorer


Theorem ralxpf

Description: Version of ralxp with bound-variable hypotheses. (Contributed by NM, 18-Aug-2006) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses ralxpf.1 yφ
ralxpf.2 zφ
ralxpf.3 xψ
ralxpf.4 x=yzφψ
Assertion ralxpf xA×BφyAzBψ

Proof

Step Hyp Ref Expression
1 ralxpf.1 yφ
2 ralxpf.2 zφ
3 ralxpf.3 xψ
4 ralxpf.4 x=yzφψ
5 cbvralsvw xA×BφwA×Bwxφ
6 cbvralsvw zBuyψvBvzuyψ
7 6 ralbii uAzBuyψuAvBvzuyψ
8 nfv uzBψ
9 nfcv _yB
10 nfs1v yuyψ
11 9 10 nfralw yzBuyψ
12 sbequ12 y=uψuyψ
13 12 ralbidv y=uzBψzBuyψ
14 8 11 13 cbvralw yAzBψuAzBuyψ
15 vex uV
16 vex vV
17 15 16 eqvinop w=uvyzw=yzyz=uv
18 1 nfsbv ywxφ
19 10 nfsbv yvzuyψ
20 18 19 nfbi ywxφvzuyψ
21 2 nfsbv zwxφ
22 nfs1v zvzuyψ
23 21 22 nfbi zwxφvzuyψ
24 3 4 sbhypf w=yzwxφψ
25 vex yV
26 vex zV
27 25 26 opth yz=uvy=uz=v
28 sbequ12 z=vuyψvzuyψ
29 12 28 sylan9bb y=uz=vψvzuyψ
30 27 29 sylbi yz=uvψvzuyψ
31 24 30 sylan9bb w=yzyz=uvwxφvzuyψ
32 23 31 exlimi zw=yzyz=uvwxφvzuyψ
33 20 32 exlimi yzw=yzyz=uvwxφvzuyψ
34 17 33 sylbi w=uvwxφvzuyψ
35 34 ralxp wA×BwxφuAvBvzuyψ
36 7 14 35 3bitr4ri wA×BwxφyAzBψ
37 5 36 bitri xA×BφyAzBψ