Metamath Proof Explorer


Theorem rankelb

Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion rankelb BR1OnABrankArankB

Proof

Step Hyp Ref Expression
1 r1elssi BR1OnBR1On
2 1 sseld BR1OnABAR1On
3 rankidn AR1On¬AR1rankA
4 2 3 syl6 BR1OnAB¬AR1rankA
5 4 imp BR1OnAB¬AR1rankA
6 rankon rankBOn
7 rankon rankAOn
8 ontri1 rankBOnrankAOnrankBrankA¬rankArankB
9 6 7 8 mp2an rankBrankA¬rankArankB
10 rankdmr1 rankBdomR1
11 rankdmr1 rankAdomR1
12 r1ord3g rankBdomR1rankAdomR1rankBrankAR1rankBR1rankA
13 10 11 12 mp2an rankBrankAR1rankBR1rankA
14 r1rankidb BR1OnBR1rankB
15 14 sselda BR1OnABAR1rankB
16 ssel R1rankBR1rankAAR1rankBAR1rankA
17 13 15 16 syl2imc BR1OnABrankBrankAAR1rankA
18 9 17 biimtrrid BR1OnAB¬rankArankBAR1rankA
19 5 18 mt3d BR1OnABrankArankB
20 19 ex BR1OnABrankArankB