Description: The membership relation is inherited by the rank function. Proposition 9.16 of TakeutiZaring p. 79. (Contributed by NM, 4-Oct-2003) (Revised by Mario Carneiro, 17-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rankelb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1elssi | |
|
2 | 1 | sseld | |
3 | rankidn | |
|
4 | 2 3 | syl6 | |
5 | 4 | imp | |
6 | rankon | |
|
7 | rankon | |
|
8 | ontri1 | |
|
9 | 6 7 8 | mp2an | |
10 | rankdmr1 | |
|
11 | rankdmr1 | |
|
12 | r1ord3g | |
|
13 | 10 11 12 | mp2an | |
14 | r1rankidb | |
|
15 | 14 | sselda | |
16 | ssel | |
|
17 | 13 15 16 | syl2imc | |
18 | 9 17 | biimtrrid | |
19 | 5 18 | mt3d | |
20 | 19 | ex | |