Metamath Proof Explorer


Theorem rdgeq1

Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion rdgeq1 F=GrecFA=recGA

Proof

Step Hyp Ref Expression
1 fveq1 F=GFgdomg=Ggdomg
2 1 ifeq2d F=GifLimdomgrangFgdomg=ifLimdomgrangGgdomg
3 2 ifeq2d F=Gifg=AifLimdomgrangFgdomg=ifg=AifLimdomgrangGgdomg
4 3 mpteq2dv F=GgVifg=AifLimdomgrangFgdomg=gVifg=AifLimdomgrangGgdomg
5 recseq gVifg=AifLimdomgrangFgdomg=gVifg=AifLimdomgrangGgdomgrecsgVifg=AifLimdomgrangFgdomg=recsgVifg=AifLimdomgrangGgdomg
6 4 5 syl F=GrecsgVifg=AifLimdomgrangFgdomg=recsgVifg=AifLimdomgrangGgdomg
7 df-rdg recFA=recsgVifg=AifLimdomgrangFgdomg
8 df-rdg recGA=recsgVifg=AifLimdomgrangGgdomg
9 6 7 8 3eqtr4g F=GrecFA=recGA