Metamath Proof Explorer


Theorem reabssgn

Description: Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024)

Ref Expression
Assertion reabssgn A A = sgn A A

Proof

Step Hyp Ref Expression
1 rexr A A *
2 sgnval A * sgn A = if A = 0 0 if A < 0 1 1
3 1 2 syl A sgn A = if A = 0 0 if A < 0 1 1
4 3 oveq1d A sgn A A = if A = 0 0 if A < 0 1 1 A
5 ovif if A = 0 0 if A < 0 1 1 A = if A = 0 0 A if A < 0 1 1 A
6 ovif if A < 0 1 1 A = if A < 0 -1 A 1 A
7 ifeq2 if A < 0 1 1 A = if A < 0 -1 A 1 A if A = 0 0 A if A < 0 1 1 A = if A = 0 0 A if A < 0 -1 A 1 A
8 6 7 ax-mp if A = 0 0 A if A < 0 1 1 A = if A = 0 0 A if A < 0 -1 A 1 A
9 5 8 eqtri if A = 0 0 if A < 0 1 1 A = if A = 0 0 A if A < 0 -1 A 1 A
10 mul02lem2 A 0 A = 0
11 10 adantr A A = 0 0 A = 0
12 simpr A A = 0 A = 0
13 12 abs00bd A A = 0 A = 0
14 11 13 eqtr4d A A = 0 0 A = A
15 recn A A
16 15 mulm1d A -1 A = A
17 15 mulid2d A 1 A = A
18 16 17 ifeq12d A if A < 0 -1 A 1 A = if A < 0 A A
19 reabsifneg A A = if A < 0 A A
20 18 19 eqtr4d A if A < 0 -1 A 1 A = A
21 20 adantr A ¬ A = 0 if A < 0 -1 A 1 A = A
22 14 21 ifeqda A if A = 0 0 A if A < 0 -1 A 1 A = A
23 9 22 eqtrid A if A = 0 0 if A < 0 1 1 A = A
24 4 23 eqtr2d A A = sgn A A