Metamath Proof Explorer


Theorem recnmulnred

Description: The product of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023)

Ref Expression
Hypotheses recnaddnred.a φ A
recnaddnred.b φ B
cndivrenred.n φ A 0
Assertion recnmulnred φ A B

Proof

Step Hyp Ref Expression
1 recnaddnred.a φ A
2 recnaddnred.b φ B
3 cndivrenred.n φ A 0
4 2 eldifbd φ ¬ B
5 df-nel A B ¬ A B
6 2 eldifad φ B
7 mulre B A A 0 B A B
8 6 1 3 7 syl3anc φ B A B
9 8 bicomd φ A B B
10 9 notbid φ ¬ A B ¬ B
11 5 10 syl5bb φ A B ¬ B
12 4 11 mpbird φ A B