Metamath Proof Explorer


Theorem recxpcl

Description: Real closure of the complex power function. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion recxpcl A 0 A B A B

Proof

Step Hyp Ref Expression
1 recn A A
2 recn B B
3 cxpval A B A B = if A = 0 if B = 0 1 0 e B log A
4 1 2 3 syl2an A B A B = if A = 0 if B = 0 1 0 e B log A
5 4 3adant2 A 0 A B A B = if A = 0 if B = 0 1 0 e B log A
6 1re 1
7 0re 0
8 6 7 ifcli if B = 0 1 0
9 8 a1i A 0 A B A = 0 if B = 0 1 0
10 df-ne A 0 ¬ A = 0
11 simpl3 A 0 A B A 0 B
12 simpl1 A 0 A B A 0 A
13 simpl2 A 0 A B A 0 0 A
14 simpr A 0 A B A 0 A 0
15 12 13 14 ne0gt0d A 0 A B A 0 0 < A
16 12 15 elrpd A 0 A B A 0 A +
17 16 relogcld A 0 A B A 0 log A
18 11 17 remulcld A 0 A B A 0 B log A
19 18 reefcld A 0 A B A 0 e B log A
20 10 19 sylan2br A 0 A B ¬ A = 0 e B log A
21 9 20 ifclda A 0 A B if A = 0 if B = 0 1 0 e B log A
22 5 21 eqeltrd A 0 A B A B