Metamath Proof Explorer


Theorem redvr

Description: The division operation of the field of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion redvr ABB0A/rfldB=AB

Proof

Step Hyp Ref Expression
1 resubdrg SubRingfldfldDivRing
2 1 simpli SubRingfld
3 simp1 ABB0A
4 3simpc ABB0BB0
5 1 simpri fldDivRing
6 rebase =Basefld
7 eqid Unitfld=Unitfld
8 re0g 0=0fld
9 6 7 8 drngunit fldDivRingBUnitfldBB0
10 5 9 ax-mp BUnitfldBB0
11 4 10 sylibr ABB0BUnitfld
12 df-refld fld=fld𝑠
13 cnflddiv ÷=/rfld
14 eqid /rfld=/rfld
15 12 13 7 14 subrgdv SubRingfldABUnitfldAB=A/rfldB
16 2 3 11 15 mp3an2i ABB0AB=A/rfldB
17 16 eqcomd ABB0A/rfldB=AB