Metamath Proof Explorer


Theorem reefcl

Description: The exponential function is real if its argument is real. (Contributed by NM, 27-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion reefcl AeA

Proof

Step Hyp Ref Expression
1 recn AA
2 efval AeA=k0Akk!
3 1 2 syl AeA=k0Akk!
4 nn0uz 0=0
5 0zd A0
6 eqid n0Ann!=n0Ann!
7 6 eftval k0n0Ann!k=Akk!
8 7 adantl Ak0n0Ann!k=Akk!
9 reeftcl Ak0Akk!
10 6 efcllem Aseq0+n0Ann!dom
11 1 10 syl Aseq0+n0Ann!dom
12 4 5 8 9 11 isumrecl Ak0Akk!
13 3 12 eqeltrd AeA