Metamath Proof Explorer


Theorem reeff1

Description: The exponential function maps real arguments one-to-one to positive reals. (Contributed by Steve Rodriguez, 25-Aug-2007) (Revised by Mario Carneiro, 10-Nov-2013)

Ref Expression
Assertion reeff1 exp:1-1+

Proof

Step Hyp Ref Expression
1 eff exp:
2 ffn exp:expFn
3 1 2 ax-mp expFn
4 ax-resscn
5 fnssres expFnexpFn
6 3 4 5 mp2an expFn
7 fvres xexpx=ex
8 rpefcl xex+
9 7 8 eqeltrd xexpx+
10 9 rgen xexpx+
11 ffnfv exp:+expFnxexpx+
12 6 10 11 mpbir2an exp:+
13 fvres yexpy=ey
14 7 13 eqeqan12d xyexpx=expyex=ey
15 reef11 xyex=eyx=y
16 15 biimpd xyex=eyx=y
17 14 16 sylbid xyexpx=expyx=y
18 17 rgen2 xyexpx=expyx=y
19 dff13 exp:1-1+exp:+xyexpx=expyx=y
20 12 18 19 mpbir2an exp:1-1+