Metamath Proof Explorer


Theorem refbas

Description: A refinement covers the same set. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses refbas.1 X=A
refbas.2 Y=B
Assertion refbas ARefBY=X

Proof

Step Hyp Ref Expression
1 refbas.1 X=A
2 refbas.2 Y=B
3 refrel RelRef
4 3 brrelex1i ARefBAV
5 1 2 isref AVARefBY=XxAyBxy
6 5 simprbda AVARefBY=X
7 4 6 mpancom ARefBY=X