Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | refreleq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq | |
|
2 | rneq | |
|
3 | 1 2 | xpeq12d | |
4 | 3 | ineq2d | |
5 | id | |
|
6 | 4 5 | sseq12d | |
7 | releq | |
|
8 | 6 7 | anbi12d | |
9 | dfrefrel2 | |
|
10 | dfrefrel2 | |
|
11 | 8 9 10 | 3bitr4g | |