Metamath Proof Explorer


Theorem refreleq

Description: Equality theorem for reflexive relation. (Contributed by Peter Mazsa, 15-Apr-2019) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion refreleq R=SRefRelRRefRelS

Proof

Step Hyp Ref Expression
1 dmeq R=SdomR=domS
2 rneq R=SranR=ranS
3 1 2 xpeq12d R=SdomR×ranR=domS×ranS
4 3 ineq2d R=SIdomR×ranR=IdomS×ranS
5 id R=SR=S
6 4 5 sseq12d R=SIdomR×ranRRIdomS×ranSS
7 releq R=SRelRRelS
8 6 7 anbi12d R=SIdomR×ranRRRelRIdomS×ranSSRelS
9 dfrefrel2 RefRelRIdomR×ranRRRelR
10 dfrefrel2 RefRelSIdomS×ranSSRelS
11 8 9 10 3bitr4g R=SRefRelRRefRelS