Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Preparatory theorems
relcnveq2
Next ⟩
relcnveq4
Metamath Proof Explorer
Ascii
Unicode
Theorem
relcnveq2
Description:
Two ways of saying a relation is symmetric.
(Contributed by
Peter Mazsa
, 28-Apr-2019)
Ref
Expression
Assertion
relcnveq2
⊢
Rel
⁡
R
→
R
-1
=
R
↔
∀
x
∀
y
x
R
y
↔
y
R
x
Proof
Step
Hyp
Ref
Expression
1
cnvsym
⊢
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
→
y
R
x
2
1
a1i
⊢
Rel
⁡
R
→
R
-1
⊆
R
↔
∀
x
∀
y
x
R
y
→
y
R
x
3
dfrel2
⊢
Rel
⁡
R
↔
R
-1
-1
=
R
4
3
biimpi
⊢
Rel
⁡
R
→
R
-1
-1
=
R
5
4
sseq1d
⊢
Rel
⁡
R
→
R
-1
-1
⊆
R
-1
↔
R
⊆
R
-1
6
cnvsym
⊢
R
-1
-1
⊆
R
-1
↔
∀
x
∀
y
x
R
-1
y
→
y
R
-1
x
7
5
6
bitr3di
⊢
Rel
⁡
R
→
R
⊆
R
-1
↔
∀
x
∀
y
x
R
-1
y
→
y
R
-1
x
8
relbrcnvg
⊢
Rel
⁡
R
→
x
R
-1
y
↔
y
R
x
9
relbrcnvg
⊢
Rel
⁡
R
→
y
R
-1
x
↔
x
R
y
10
8
9
imbi12d
⊢
Rel
⁡
R
→
x
R
-1
y
→
y
R
-1
x
↔
y
R
x
→
x
R
y
11
10
2albidv
⊢
Rel
⁡
R
→
∀
x
∀
y
x
R
-1
y
→
y
R
-1
x
↔
∀
x
∀
y
y
R
x
→
x
R
y
12
7
11
bitrd
⊢
Rel
⁡
R
→
R
⊆
R
-1
↔
∀
x
∀
y
y
R
x
→
x
R
y
13
2
12
anbi12d
⊢
Rel
⁡
R
→
R
-1
⊆
R
∧
R
⊆
R
-1
↔
∀
x
∀
y
x
R
y
→
y
R
x
∧
∀
x
∀
y
y
R
x
→
x
R
y
14
eqss
⊢
R
-1
=
R
↔
R
-1
⊆
R
∧
R
⊆
R
-1
15
2albiim
⊢
∀
x
∀
y
x
R
y
↔
y
R
x
↔
∀
x
∀
y
x
R
y
→
y
R
x
∧
∀
x
∀
y
y
R
x
→
x
R
y
16
13
14
15
3bitr4g
⊢
Rel
⁡
R
→
R
-1
=
R
↔
∀
x
∀
y
x
R
y
↔
y
R
x