Metamath Proof Explorer


Theorem relcnveq2

Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 28-Apr-2019)

Ref Expression
Assertion relcnveq2 RelRR-1=RxyxRyyRx

Proof

Step Hyp Ref Expression
1 cnvsym R-1RxyxRyyRx
2 1 a1i RelRR-1RxyxRyyRx
3 dfrel2 RelRR-1-1=R
4 3 biimpi RelRR-1-1=R
5 4 sseq1d RelRR-1-1R-1RR-1
6 cnvsym R-1-1R-1xyxR-1yyR-1x
7 5 6 bitr3di RelRRR-1xyxR-1yyR-1x
8 relbrcnvg RelRxR-1yyRx
9 relbrcnvg RelRyR-1xxRy
10 8 9 imbi12d RelRxR-1yyR-1xyRxxRy
11 10 2albidv RelRxyxR-1yyR-1xxyyRxxRy
12 7 11 bitrd RelRRR-1xyyRxxRy
13 2 12 anbi12d RelRR-1RRR-1xyxRyyRxxyyRxxRy
14 eqss R-1=RR-1RRR-1
15 2albiim xyxRyyRxxyxRyyRxxyyRxxRy
16 13 14 15 3bitr4g RelRR-1=RxyxRyyRx