Metamath Proof Explorer


Theorem reldm

Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013)

Ref Expression
Assertion reldm RelAdomA=ranxA1stx

Proof

Step Hyp Ref Expression
1 releldm2 RelAydomAzA1stz=y
2 fvex 1stxV
3 eqid xA1stx=xA1stx
4 2 3 fnmpti xA1stxFnA
5 fvelrnb xA1stxFnAyranxA1stxzAxA1stxz=y
6 4 5 ax-mp yranxA1stxzAxA1stxz=y
7 fveq2 x=z1stx=1stz
8 fvex 1stzV
9 7 3 8 fvmpt zAxA1stxz=1stz
10 9 eqeq1d zAxA1stxz=y1stz=y
11 10 rexbiia zAxA1stxz=yzA1stz=y
12 11 a1i RelAzAxA1stxz=yzA1stz=y
13 6 12 bitr2id RelAzA1stz=yyranxA1stx
14 1 13 bitrd RelAydomAyranxA1stx
15 14 eqrdv RelAdomA=ranxA1stx