Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | reldm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releldm2 | |
|
2 | fvex | |
|
3 | eqid | |
|
4 | 2 3 | fnmpti | |
5 | fvelrnb | |
|
6 | 4 5 | ax-mp | |
7 | fveq2 | |
|
8 | fvex | |
|
9 | 7 3 8 | fvmpt | |
10 | 9 | eqeq1d | |
11 | 10 | rexbiia | |
12 | 11 | a1i | |
13 | 6 12 | bitr2id | |
14 | 1 13 | bitrd | |
15 | 14 | eqrdv | |