Metamath Proof Explorer


Theorem reldmprcof1

Description: The domain of the object part of the pre-composition functor is a relation. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Assertion reldmprcof1 Could not format assertion : No typesetting found for |- Rel dom ( 1st ` ( P -o.F F ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 relfunc Rel 1 st P Func 2 nd P
2 ovex k func F V
3 eqid k 1 st P Func 2 nd P k func F = k 1 st P Func 2 nd P k func F
4 2 3 dmmpti dom k 1 st P Func 2 nd P k func F = 1 st P Func 2 nd P
5 4 releqi Rel dom k 1 st P Func 2 nd P k func F Rel 1 st P Func 2 nd P
6 1 5 mpbir Rel dom k 1 st P Func 2 nd P k func F
7 eqid 1 st P Func 2 nd P = 1 st P Func 2 nd P
8 eqid 1 st P Nat 2 nd P = 1 st P Nat 2 nd P
9 simpr P V F V F V
10 simpl P V F V P V
11 eqidd P V F V 1 st P = 1 st P
12 eqidd P V F V 2 nd P = 2 nd P
13 7 8 9 10 11 12 prcofvalg Could not format ( ( P e. _V /\ F e. _V ) -> ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) : No typesetting found for |- ( ( P e. _V /\ F e. _V ) -> ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. ) with typecode |-
14 ovex 1 st P Func 2 nd P V
15 14 mptex k 1 st P Func 2 nd P k func F V
16 14 14 mpoex k 1 st P Func 2 nd P , l 1 st P Func 2 nd P a k 1 st P Nat 2 nd P l a 1 st F V
17 15 16 op1std Could not format ( ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. -> ( 1st ` ( P -o.F F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) : No typesetting found for |- ( ( P -o.F F ) = <. ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) , ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) , l e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( a e. ( k ( ( 1st ` P ) Nat ( 2nd ` P ) ) l ) |-> ( a o. ( 1st ` F ) ) ) ) >. -> ( 1st ` ( P -o.F F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) with typecode |-
18 13 17 syl Could not format ( ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) : No typesetting found for |- ( ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) with typecode |-
19 18 dmeqd Could not format ( ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) : No typesetting found for |- ( ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) with typecode |-
20 19 releqd Could not format ( ( P e. _V /\ F e. _V ) -> ( Rel dom ( 1st ` ( P -o.F F ) ) <-> Rel dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) ) : No typesetting found for |- ( ( P e. _V /\ F e. _V ) -> ( Rel dom ( 1st ` ( P -o.F F ) ) <-> Rel dom ( k e. ( ( 1st ` P ) Func ( 2nd ` P ) ) |-> ( k o.func F ) ) ) ) with typecode |-
21 6 20 mpbiri Could not format ( ( P e. _V /\ F e. _V ) -> Rel dom ( 1st ` ( P -o.F F ) ) ) : No typesetting found for |- ( ( P e. _V /\ F e. _V ) -> Rel dom ( 1st ` ( P -o.F F ) ) ) with typecode |-
22 rel0 Rel
23 reldmprcof Could not format Rel dom -o.F : No typesetting found for |- Rel dom -o.F with typecode |-
24 23 ovprc Could not format ( -. ( P e. _V /\ F e. _V ) -> ( P -o.F F ) = (/) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> ( P -o.F F ) = (/) ) with typecode |-
25 24 fveq2d Could not format ( -. ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = ( 1st ` (/) ) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = ( 1st ` (/) ) ) with typecode |-
26 1st0 1 st =
27 25 26 eqtrdi Could not format ( -. ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = (/) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> ( 1st ` ( P -o.F F ) ) = (/) ) with typecode |-
28 27 dmeqd Could not format ( -. ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = dom (/) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = dom (/) ) with typecode |-
29 dm0 dom =
30 28 29 eqtrdi Could not format ( -. ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = (/) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> dom ( 1st ` ( P -o.F F ) ) = (/) ) with typecode |-
31 30 releqd Could not format ( -. ( P e. _V /\ F e. _V ) -> ( Rel dom ( 1st ` ( P -o.F F ) ) <-> Rel (/) ) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> ( Rel dom ( 1st ` ( P -o.F F ) ) <-> Rel (/) ) ) with typecode |-
32 22 31 mpbiri Could not format ( -. ( P e. _V /\ F e. _V ) -> Rel dom ( 1st ` ( P -o.F F ) ) ) : No typesetting found for |- ( -. ( P e. _V /\ F e. _V ) -> Rel dom ( 1st ` ( P -o.F F ) ) ) with typecode |-
33 21 32 pm2.61i Could not format Rel dom ( 1st ` ( P -o.F F ) ) : No typesetting found for |- Rel dom ( 1st ` ( P -o.F F ) ) with typecode |-