Metamath Proof Explorer


Theorem relexpdmg

Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpdmg N0RVdomRrNdomRranR

Proof

Step Hyp Ref Expression
1 elnn0 N0NN=0
2 relexpnndm NRVdomRrNdomR
3 ssun1 domRdomRranR
4 2 3 sstrdi NRVdomRrNdomRranR
5 4 ex NRVdomRrNdomRranR
6 simpl N=0RVN=0
7 6 oveq2d N=0RVRrN=Rr0
8 relexp0g RVRr0=IdomRranR
9 8 adantl N=0RVRr0=IdomRranR
10 7 9 eqtrd N=0RVRrN=IdomRranR
11 10 dmeqd N=0RVdomRrN=domIdomRranR
12 dmresi domIdomRranR=domRranR
13 11 12 eqtrdi N=0RVdomRrN=domRranR
14 eqimss domRrN=domRranRdomRrNdomRranR
15 13 14 syl N=0RVdomRrNdomRranR
16 15 ex N=0RVdomRrNdomRranR
17 5 16 jaoi NN=0RVdomRrNdomRranR
18 1 17 sylbi N0RVdomRrNdomRranR
19 18 imp N0RVdomRrNdomRranR