Metamath Proof Explorer


Theorem relexpnnrn

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020)

Ref Expression
Assertion relexpnnrn NRVranRrNranR

Proof

Step Hyp Ref Expression
1 cnvexg RVR-1V
2 relexpnndm NR-1VdomR-1rNdomR-1
3 1 2 sylan2 NRVdomR-1rNdomR-1
4 df-rn ranRrN=domRrN-1
5 nnnn0 NN0
6 relexpcnv N0RVRrN-1=R-1rN
7 5 6 sylan NRVRrN-1=R-1rN
8 7 dmeqd NRVdomRrN-1=domR-1rN
9 4 8 eqtrid NRVranRrN=domR-1rN
10 df-rn ranR=domR-1
11 10 a1i NRVranR=domR-1
12 3 9 11 3sstr4d NRVranRrNranR