Metamath Proof Explorer


Theorem relogrn

Description: The range of the natural logarithm function includes the real numbers. (Contributed by Paul Chapman, 21-Apr-2008) (Proof shortened by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion relogrn AAranlog

Proof

Step Hyp Ref Expression
1 recn AA
2 pipos 0<π
3 pire π
4 lt0neg2 π0<ππ<0
5 3 4 ax-mp 0<ππ<0
6 2 5 mpbi π<0
7 reim0 AA=0
8 6 7 breqtrrid Aπ<A
9 0re 0
10 9 3 2 ltleii 0π
11 7 10 eqbrtrdi AAπ
12 ellogrn AranlogAπ<AAπ
13 1 8 11 12 syl3anbrc AAranlog