Metamath Proof Explorer


Theorem relopabiALT

Description: Alternate proof of relopabi (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis relopabi.1 A=xy|φ
Assertion relopabiALT RelA

Proof

Step Hyp Ref Expression
1 relopabi.1 A=xy|φ
2 df-opab xy|φ=z|xyz=xyφ
3 1 2 eqtri A=z|xyz=xyφ
4 vex xV
5 vex yV
6 4 5 opelvv xyV×V
7 eleq1 z=xyzV×VxyV×V
8 6 7 mpbiri z=xyzV×V
9 8 adantr z=xyφzV×V
10 9 exlimivv xyz=xyφzV×V
11 10 abssi z|xyz=xyφV×V
12 3 11 eqsstri AV×V
13 df-rel RelAAV×V
14 12 13 mpbir RelA