Description: Alternate proof of relopabi (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | relopabi.1 | |
|
Assertion | relopabiALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | |
|
2 | df-opab | |
|
3 | 1 2 | eqtri | |
4 | vex | |
|
5 | vex | |
|
6 | 4 5 | opelvv | |
7 | eleq1 | |
|
8 | 6 7 | mpbiri | |
9 | 8 | adantr | |
10 | 9 | exlimivv | |
11 | 10 | abssi | |
12 | 3 11 | eqsstri | |
13 | df-rel | |
|
14 | 12 13 | mpbir | |