Metamath Proof Explorer


Theorem reltsub1

Description: Subtraction from both sides of 'less than'. Compare ltsub1 . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion reltsub1 A B C A < B A - C < B - C

Proof

Step Hyp Ref Expression
1 rersubcl A C A - C
2 1 3adant2 A B C A - C
3 rersubcl B C B - C
4 3 3adant1 A B C B - C
5 simp3 A B C C
6 2 4 5 ltadd2d A B C A - C < B - C C + A - C < C + B - C
7 repncan3 C A C + A - C = A
8 7 ancoms A C C + A - C = A
9 8 3adant2 A B C C + A - C = A
10 repncan3 C B C + B - C = B
11 10 ancoms B C C + B - C = B
12 11 3adant1 A B C C + B - C = B
13 9 12 breq12d A B C C + A - C < C + B - C A < B
14 6 13 bitr2d A B C A < B A - C < B - C