Metamath Proof Explorer


Theorem rescbasOLD

Description: Obsolete version of rescbas as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rescbas.d D=CcatH
rescbas.b B=BaseC
rescbas.c φCV
rescbas.h φHFnS×S
rescbas.s φSB
Assertion rescbasOLD φS=BaseD

Proof

Step Hyp Ref Expression
1 rescbas.d D=CcatH
2 rescbas.b B=BaseC
3 rescbas.c φCV
4 rescbas.h φHFnS×S
5 rescbas.s φSB
6 baseid Base=SlotBasendx
7 1re 1
8 1nn 1
9 4nn0 40
10 1nn0 10
11 1lt10 1<10
12 8 9 10 11 declti 1<14
13 7 12 ltneii 114
14 basendx Basendx=1
15 homndx Homndx=14
16 14 15 neeq12i BasendxHomndx114
17 13 16 mpbir BasendxHomndx
18 6 17 setsnid BaseC𝑠S=BaseC𝑠SsSetHomndxH
19 eqid C𝑠S=C𝑠S
20 19 2 ressbas2 SBS=BaseC𝑠S
21 5 20 syl φS=BaseC𝑠S
22 2 fvexi BV
23 22 ssex SBSV
24 5 23 syl φSV
25 1 3 24 4 rescval2 φD=C𝑠SsSetHomndxH
26 25 fveq2d φBaseD=BaseC𝑠SsSetHomndxH
27 18 21 26 3eqtr4a φS=BaseD