Metamath Proof Explorer


Theorem resccoOLD

Description: Obsolete proof of rescco as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rescbas.d D=CcatH
rescbas.b B=BaseC
rescbas.c φCV
rescbas.h φHFnS×S
rescbas.s φSB
rescco.o ·˙=compC
Assertion resccoOLD φ·˙=compD

Proof

Step Hyp Ref Expression
1 rescbas.d D=CcatH
2 rescbas.b B=BaseC
3 rescbas.c φCV
4 rescbas.h φHFnS×S
5 rescbas.s φSB
6 rescco.o ·˙=compC
7 ccoid comp=Slotcompndx
8 1nn0 10
9 4nn 4
10 8 9 decnncl 14
11 10 nnrei 14
12 4nn0 40
13 5nn 5
14 4lt5 4<5
15 8 12 13 14 declt 14<15
16 11 15 gtneii 1514
17 ccondx compndx=15
18 homndx Homndx=14
19 17 18 neeq12i compndxHomndx1514
20 16 19 mpbir compndxHomndx
21 7 20 setsnid compC𝑠S=compC𝑠SsSetHomndxH
22 2 fvexi BV
23 22 ssex SBSV
24 5 23 syl φSV
25 eqid C𝑠S=C𝑠S
26 25 6 ressco SV·˙=compC𝑠S
27 24 26 syl φ·˙=compC𝑠S
28 1 3 24 4 rescval2 φD=C𝑠SsSetHomndxH
29 28 fveq2d φcompD=compC𝑠SsSetHomndxH
30 21 27 29 3eqtr4a φ·˙=compD