Metamath Proof Explorer


Theorem resincncf

Description: sin restricted to reals is continuous from reals to reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion resincncf sin:cn

Proof

Step Hyp Ref Expression
1 sinf sin:
2 ffn sin:sinFn
3 1 2 ax-mp sinFn
4 ax-resscn
5 fnssres sinFnsinFn
6 3 4 5 mp2an sinFn
7 fvres xsinx=sinx
8 resincl xsinx
9 7 8 eqeltrd xsinx
10 9 rgen xsinx
11 ffnfv sin:sinFnxsinx
12 6 10 11 mpbir2an sin:
13 sincn sin:cn
14 rescncf sin:cnsin:cn
15 4 13 14 mp2 sin:cn
16 cncfcdm sin:cnsin:cnsin:
17 4 15 16 mp2an sin:cnsin:
18 12 17 mpbir sin:cn