Metamath Proof Explorer


Theorem resopab2

Description: Restriction of a class abstraction of ordered pairs. (Contributed by NM, 24-Aug-2007)

Ref Expression
Assertion resopab2 ABxy|xBφA=xy|xAφ

Proof

Step Hyp Ref Expression
1 resopab xy|xBφA=xy|xAxBφ
2 ssel ABxAxB
3 2 pm4.71d ABxAxAxB
4 3 anbi1d ABxAφxAxBφ
5 anass xAxBφxAxBφ
6 4 5 bitr2di ABxAxBφxAφ
7 6 opabbidv ABxy|xAxBφ=xy|xAφ
8 1 7 eqtrid ABxy|xBφA=xy|xAφ